Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
eb751565
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
eb751565
编写于
5月 14, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add darknet
上级
411664bd
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
239 addition
and
0 deletion
+239
-0
examples/yolov3/darknet.py
examples/yolov3/darknet.py
+239
-0
未找到文件。
examples/yolov3/darknet.py
0 → 100644
浏览文件 @
eb751565
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
math
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
,
Pool2D
,
Linear
from
paddle.incubate.hapi.model
import
Model
from
paddle.incubate.hapi.download
import
get_weights_path_from_url
__all__
=
[
'DarkNet'
,
'darknet53'
]
# {num_layers: (url, md5)}
model_urls
=
{
'darknet53'
:
(
'https://paddle-hapi.bj.bcebos.com/models/darknet53.pdparams'
,
'ca506a90e2efecb9a2093f8ada808708'
)
}
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
=
3
,
stride
=
1
,
groups
=
1
,
padding
=
0
,
act
=
"leaky"
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
conv
=
Conv2D
(
num_channels
=
ch_in
,
num_filters
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
groups
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
)),
bias_attr
=
False
,
act
=
None
)
self
.
batch_norm
=
BatchNorm
(
num_channels
=
ch_out
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
regularizer
=
L2Decay
(
0.
)),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
)))
self
.
act
=
act
def
forward
(
self
,
inputs
):
out
=
self
.
conv
(
inputs
)
out
=
self
.
batch_norm
(
out
)
if
self
.
act
==
'leaky'
:
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
class
DownSample
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
):
super
(
DownSample
,
self
).
__init__
()
self
.
conv_bn_layer
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
):
out
=
self
.
conv_bn_layer
(
inputs
)
return
out
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
conv1
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
conv2
=
ConvBNLayer
(
ch_in
=
ch_out
,
ch_out
=
ch_out
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
def
forward
(
self
,
inputs
):
conv1
=
self
.
conv1
(
inputs
)
conv2
=
self
.
conv2
(
conv1
)
out
=
fluid
.
layers
.
elementwise_add
(
x
=
inputs
,
y
=
conv2
,
act
=
None
)
return
out
class
LayerWarp
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
count
):
super
(
LayerWarp
,
self
).
__init__
()
self
.
basicblock0
=
BasicBlock
(
ch_in
,
ch_out
)
self
.
res_out_list
=
[]
for
i
in
range
(
1
,
count
):
res_out
=
self
.
add_sublayer
(
"basic_block_%d"
%
(
i
),
BasicBlock
(
ch_out
*
2
,
ch_out
))
self
.
res_out_list
.
append
(
res_out
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
):
y
=
self
.
basicblock0
(
inputs
)
for
basic_block_i
in
self
.
res_out_list
:
y
=
basic_block_i
(
y
)
return
y
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
])}
class
DarkNet
(
Model
):
"""DarkNet model from
`"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_
Args:
num_layers (int): layer number of DarkNet, only 53 supported currently, default: 53.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
"""
def
__init__
(
self
,
num_layers
=
53
,
num_classes
=
1000
,
with_pool
=
True
,
classifier_activation
=
'softmax'
):
super
(
DarkNet
,
self
).
__init__
()
assert
num_layers
in
DarkNet_cfg
.
keys
(),
\
"only support num_layers in {} currently"
\
.
format
(
DarkNet_cfg
.
keys
())
self
.
stages
=
DarkNet_cfg
[
num_layers
]
self
.
stages
=
self
.
stages
[
0
:
5
]
self
.
num_classes
=
num_classes
self
.
with_pool
=
True
ch_in
=
3
self
.
conv0
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
downsample0
=
DownSample
(
ch_in
=
32
,
ch_out
=
32
*
2
)
self
.
darknet53_conv_block_list
=
[]
self
.
downsample_list
=
[]
ch_in
=
[
64
,
128
,
256
,
512
,
1024
]
for
i
,
stage
in
enumerate
(
self
.
stages
):
conv_block
=
self
.
add_sublayer
(
"stage_%d"
%
(
i
),
LayerWarp
(
int
(
ch_in
[
i
]),
32
*
(
2
**
i
),
stage
))
self
.
darknet53_conv_block_list
.
append
(
conv_block
)
for
i
in
range
(
len
(
self
.
stages
)
-
1
):
downsample
=
self
.
add_sublayer
(
"stage_%d_downsample"
%
i
,
DownSample
(
ch_in
=
32
*
(
2
**
(
i
+
1
)),
ch_out
=
32
*
(
2
**
(
i
+
2
))))
self
.
downsample_list
.
append
(
downsample
)
if
self
.
with_pool
:
self
.
global_pool
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
if
self
.
num_classes
>
0
:
stdv
=
1.0
/
math
.
sqrt
(
32
*
(
2
**
(
i
+
2
)))
self
.
fc_input_dim
=
32
*
(
2
**
(
i
+
2
))
self
.
fc
=
Linear
(
self
.
fc_input_dim
,
num_classes
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
inputs
):
out
=
self
.
conv0
(
inputs
)
out
=
self
.
downsample0
(
out
)
for
i
,
conv_block_i
in
enumerate
(
self
.
darknet53_conv_block_list
):
out
=
conv_block_i
(
out
)
if
i
<
len
(
self
.
stages
)
-
1
:
out
=
self
.
downsample_list
[
i
](
out
)
if
self
.
with_pool
:
out
=
self
.
global_pool
(
out
)
if
self
.
num_classes
>
0
:
out
=
fluid
.
layers
.
reshape
(
out
,
shape
=
[
-
1
,
self
.
fc_input_dim
])
out
=
self
.
fc
(
out
)
return
out
def
_darknet
(
arch
,
num_layers
=
53
,
pretrained
=
False
,
**
kwargs
):
model
=
DarkNet
(
num_layers
,
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
weight_path
=
get_weights_path_from_url
(
*
(
model_urls
[
arch
]))
assert
weight_path
.
endswith
(
'.pdparams'
),
\
"suffix of weight must be .pdparams"
model
.
load
(
weight_path
)
return
model
def
darknet53
(
pretrained
=
False
,
**
kwargs
):
"""DarkNet 53-layer model
Args:
input_channels (bool): channel number of input data, default 3.
pretrained (bool): If True, returns a model pre-trained on ImageNet,
default True.
"""
return
_darknet
(
'darknet53'
,
53
,
pretrained
,
**
kwargs
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录