提交 eb751565 编写于 作者: L LielinJiang

add darknet

上级 411664bd
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import math
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.dygraph.nn import Conv2D, BatchNorm, Pool2D, Linear
from paddle.incubate.hapi.model import Model
from paddle.incubate.hapi.download import get_weights_path_from_url
__all__ = ['DarkNet', 'darknet53']
# {num_layers: (url, md5)}
model_urls = {
'darknet53':
('https://paddle-hapi.bj.bcebos.com/models/darknet53.pdparams',
'ca506a90e2efecb9a2093f8ada808708')
}
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size=3,
stride=1,
groups=1,
padding=0,
act="leaky"):
super(ConvBNLayer, self).__init__()
self.conv = Conv2D(
num_channels=ch_in,
num_filters=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
param_attr=ParamAttr(
initializer=fluid.initializer.Normal(0., 0.02)),
bias_attr=False,
act=None)
self.batch_norm = BatchNorm(
num_channels=ch_out,
param_attr=ParamAttr(
initializer=fluid.initializer.Normal(0., 0.02),
regularizer=L2Decay(0.)),
bias_attr=ParamAttr(
initializer=fluid.initializer.Constant(0.0),
regularizer=L2Decay(0.)))
self.act = act
def forward(self, inputs):
out = self.conv(inputs)
out = self.batch_norm(out)
if self.act == 'leaky':
out = fluid.layers.leaky_relu(x=out, alpha=0.1)
return out
class DownSample(fluid.dygraph.Layer):
def __init__(self, ch_in, ch_out, filter_size=3, stride=2, padding=1):
super(DownSample, self).__init__()
self.conv_bn_layer = ConvBNLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=filter_size,
stride=stride,
padding=padding)
self.ch_out = ch_out
def forward(self, inputs):
out = self.conv_bn_layer(inputs)
return out
class BasicBlock(fluid.dygraph.Layer):
def __init__(self, ch_in, ch_out):
super(BasicBlock, self).__init__()
self.conv1 = ConvBNLayer(
ch_in=ch_in, ch_out=ch_out, filter_size=1, stride=1, padding=0)
self.conv2 = ConvBNLayer(
ch_in=ch_out,
ch_out=ch_out * 2,
filter_size=3,
stride=1,
padding=1)
def forward(self, inputs):
conv1 = self.conv1(inputs)
conv2 = self.conv2(conv1)
out = fluid.layers.elementwise_add(x=inputs, y=conv2, act=None)
return out
class LayerWarp(fluid.dygraph.Layer):
def __init__(self, ch_in, ch_out, count):
super(LayerWarp, self).__init__()
self.basicblock0 = BasicBlock(ch_in, ch_out)
self.res_out_list = []
for i in range(1, count):
res_out = self.add_sublayer("basic_block_%d" % (i),
BasicBlock(ch_out * 2, ch_out))
self.res_out_list.append(res_out)
self.ch_out = ch_out
def forward(self, inputs):
y = self.basicblock0(inputs)
for basic_block_i in self.res_out_list:
y = basic_block_i(y)
return y
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
class DarkNet(Model):
"""DarkNet model from
`"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_
Args:
num_layers (int): layer number of DarkNet, only 53 supported currently, default: 53.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
"""
def __init__(self,
num_layers=53,
num_classes=1000,
with_pool=True,
classifier_activation='softmax'):
super(DarkNet, self).__init__()
assert num_layers in DarkNet_cfg.keys(), \
"only support num_layers in {} currently" \
.format(DarkNet_cfg.keys())
self.stages = DarkNet_cfg[num_layers]
self.stages = self.stages[0:5]
self.num_classes = num_classes
self.with_pool = True
ch_in = 3
self.conv0 = ConvBNLayer(
ch_in=ch_in, ch_out=32, filter_size=3, stride=1, padding=1)
self.downsample0 = DownSample(ch_in=32, ch_out=32 * 2)
self.darknet53_conv_block_list = []
self.downsample_list = []
ch_in = [64, 128, 256, 512, 1024]
for i, stage in enumerate(self.stages):
conv_block = self.add_sublayer("stage_%d" % (i),
LayerWarp(
int(ch_in[i]), 32 * (2**i),
stage))
self.darknet53_conv_block_list.append(conv_block)
for i in range(len(self.stages) - 1):
downsample = self.add_sublayer(
"stage_%d_downsample" % i,
DownSample(
ch_in=32 * (2**(i + 1)), ch_out=32 * (2**(i + 2))))
self.downsample_list.append(downsample)
if self.with_pool:
self.global_pool = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
if self.num_classes > 0:
stdv = 1.0 / math.sqrt(32 * (2**(i + 2)))
self.fc_input_dim = 32 * (2**(i + 2))
self.fc = Linear(
self.fc_input_dim,
num_classes,
act='softmax',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
def forward(self, inputs):
out = self.conv0(inputs)
out = self.downsample0(out)
for i, conv_block_i in enumerate(self.darknet53_conv_block_list):
out = conv_block_i(out)
if i < len(self.stages) - 1:
out = self.downsample_list[i](out)
if self.with_pool:
out = self.global_pool(out)
if self.num_classes > 0:
out = fluid.layers.reshape(out, shape=[-1, self.fc_input_dim])
out = self.fc(out)
return out
def _darknet(arch, num_layers=53, pretrained=False, **kwargs):
model = DarkNet(num_layers, **kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(*(model_urls[arch]))
assert weight_path.endswith('.pdparams'), \
"suffix of weight must be .pdparams"
model.load(weight_path)
return model
def darknet53(pretrained=False, **kwargs):
"""DarkNet 53-layer model
Args:
input_channels (bool): channel number of input data, default 3.
pretrained (bool): If True, returns a model pre-trained on ImageNet,
default True.
"""
return _darknet('darknet53', 53, pretrained, **kwargs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册