Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
e3b4d985
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e3b4d985
编写于
4月 16, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add image cls scripts
上级
4593658d
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
88 addition
and
0 deletion
+88
-0
examples/image_classification/scripts/mobilenet_v1_x1.0.sh
examples/image_classification/scripts/mobilenet_v1_x1.0.sh
+13
-0
examples/image_classification/scripts/mobilenet_v2_x1.0.sh
examples/image_classification/scripts/mobilenet_v2_x1.0.sh
+12
-0
examples/image_classification/scripts/resnet101.sh
examples/image_classification/scripts/resnet101.sh
+10
-0
examples/image_classification/scripts/resnet152.sh
examples/image_classification/scripts/resnet152.sh
+10
-0
examples/image_classification/scripts/resnet18.sh
examples/image_classification/scripts/resnet18.sh
+11
-0
examples/image_classification/scripts/resnet34.sh
examples/image_classification/scripts/resnet34.sh
+11
-0
examples/image_classification/scripts/resnet50.sh
examples/image_classification/scripts/resnet50.sh
+10
-0
examples/image_classification/scripts/vgg16.sh
examples/image_classification/scripts/vgg16.sh
+11
-0
未找到文件。
examples/image_classification/scripts/mobilenet_v1_x1.0.sh
0 → 100644
浏览文件 @
e3b4d985
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
# 默认imagenet数据存储在data/ILSVRC2012/下,去除-d便使用静态图模式运行
python
-m
paddle.distributed.launch main.py
\
--arch
mobilenet_v1
\
--epoch
120
\
--batch-size
64
\
--learning-rate
0.1
\
--lr-scheduler
piecewise
\
--milestones
30 60 90
\
--weight-decay
3e-5
\
-d
\
data/ILSVRC2012/
\ No newline at end of file
examples/image_classification/scripts/mobilenet_v2_x1.0.sh
0 → 100644
浏览文件 @
e3b4d985
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
# 默认imagenet数据存储在data/ILSVRC2012/下,去除-d便使用静态图模式运行
python
-m
paddle.distributed.launch main.py
\
--arch
mobilenet_v2
\
--epoch
240
\
--batch-size
64
\
--learning-rate
0.1
\
--lr-scheduler
cosine
\
--weight-decay
4e-5
\
-d
\
data/ILSVRC2012/
\ No newline at end of file
examples/image_classification/scripts/resnet101.sh
0 → 100644
浏览文件 @
e3b4d985
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
# 默认imagenet数据存储在data/ILSVRC2012/下,去除-d便使用静态图模式运行
python
-m
paddle.distributed.launch main.py
\
--arch
resnet101
\
--epoch
90
\
--batch-size
64
\
--learning-rate
0.1
\
-d
\
data/ILSVRC2012/
\ No newline at end of file
examples/image_classification/scripts/resnet152.sh
0 → 100644
浏览文件 @
e3b4d985
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
# 默认imagenet数据存储在data/ILSVRC2012/下,去除-d便使用静态图模式运行
python
-m
paddle.distributed.launch main.py
\
--arch
resnet152
\
--epoch
90
\
--batch-size
64
\
--learning-rate
0.1
\
-d
\
data/ILSVRC2012/
\ No newline at end of file
examples/image_classification/scripts/resnet18.sh
0 → 100644
浏览文件 @
e3b4d985
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
# 默认imagenet数据存储在data/ILSVRC2012/下,去除-d便使用静态图模式运行
python
-m
paddle.distributed.launch main.py
\
--arch
resnet18
\
--epoch
120
\
--batch-size
64
\
--learning-rate
0.1
\
--lr-scheduler
cosine
\
-d
\
data/ILSVRC2012/
\ No newline at end of file
examples/image_classification/scripts/resnet34.sh
0 → 100644
浏览文件 @
e3b4d985
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
# 默认imagenet数据存储在data/ILSVRC2012/下,去除-d便使用静态图模式运行
python
-m
paddle.distributed.launch main.py
\
--arch
resnet34
\
--epoch
120
\
--batch-size
64
\
--learning-rate
0.1
\
--lr-scheduler
cosine
\
-d
\
data/ILSVRC2012/
\ No newline at end of file
examples/image_classification/scripts/resnet50.sh
0 → 100644
浏览文件 @
e3b4d985
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
# 默认imagenet数据存储在data/ILSVRC2012/下,去除-d便使用静态图模式运行
python
-m
paddle.distributed.launch main.py
\
--arch
resnet50
\
--epoch
90
\
--batch-size
64
\
--learning-rate
0.1
\
-d
\
data/ILSVRC2012/
\ No newline at end of file
examples/image_classification/scripts/vgg16.sh
0 → 100644
浏览文件 @
e3b4d985
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
# 默认imagenet数据存储在data/ILSVRC2012/下,去除-d便使用静态图模式运行
python
-m
paddle.distributed.launch main.py
\
--arch
vgg16
\
--epoch
90
\
--batch-size
64
\
--learning-rate
0.01
\
--lr-scheduler
cosine
\
-d
\
data/ILSVRC2012/
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录