Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
d04aefb9
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d04aefb9
编写于
3月 13, 2020
作者:
Q
qingqing01
浏览文件
操作
浏览文件
下载
差异文件
Fix conflicts
上级
180233f2
1a2d3b5f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
117 addition
and
8 deletion
+117
-8
model.py
model.py
+117
-8
未找到文件。
model.py
浏览文件 @
d04aefb9
...
...
@@ -148,6 +148,9 @@ class StaticGraphAdapter(object):
base
=
os
.
path
.
basename
(
path
)
assert
base
!=
""
,
"path should be of 'dirname/filename' format"
dir_name
=
os
.
path
.
dirname
(
path
)
if
dir_name
and
not
os
.
path
.
exists
(
dir_name
):
os
.
makedirs
(
dir_name
)
param_path
=
path
+
".pdparams"
_save
(
self
.
model
.
state_dict
(),
param_path
)
prog
=
self
.
_progs
.
get
(
'train'
,
None
)
...
...
@@ -161,9 +164,7 @@ class StaticGraphAdapter(object):
}
if
not
optim
:
return
# HACK this is contrived, optimizer state is not the same for
# static/dynamic graph mode
optim
[
'__static_graph_only__'
]
=
True
_save
(
optim
,
optim_path
)
def
load
(
self
,
path
):
...
...
@@ -198,8 +199,6 @@ class StaticGraphAdapter(object):
optim_state
=
_load
(
optim_path
)
if
optim_state
is
None
:
return
assert
'__static_graph_only__'
in
optim_state
,
\
"optimizer saved in dygraph mode is not usable in static graph"
assert
self
.
_executor
self
.
_load_optimizer
(
optim_state
)
...
...
@@ -214,10 +213,66 @@ class StaticGraphAdapter(object):
global_scope
(),
self
.
_executor
.
_default_executor
)
converted_state
=
dict
(
state
)
for
var
in
optim
:
assert
var
.
name
in
state
,
\
if
var
.
name
in
[
"@LR_DECAY_COUNTER@"
,
"global_step"
]:
# When using learning rate scheduler, dygraph would name the
# global step var as "global_step" to save, while static-graph
# would has a state var named as "@LR_DECAY_COUNTER@".
# NOTE: dygraph saved global_step is 1 larger than that in
# static-graph, since the time of global_step to increase is
# different.
state_val
=
(
np
.
array
(
converted_state
.
pop
(
"global_step"
))
-
1
)
if
"global_step"
in
converted_state
else
converted_state
.
pop
(
"@LR_DECAY_COUNTER@"
,
None
)
if
state_val
is
not
None
:
converted_state
[
var
.
name
]
=
state_val
elif
var
.
name
.
startswith
(
"learning_rate_"
):
# When using static learning rate, static-graph would make it
# a persistable var named 'unique_name.generate("learning_rate")',
# However, dygraph wouldn't save it.
if
var
.
name
not
in
state
:
continue
else
:
# moment and other accumulators
if
var
.
name
not
in
converted_state
:
# try to convert from dygraph name
opt_name
=
self
.
model
.
_optimizer
.
_name
opt_cls_name
=
self
.
model
.
_optimizer
.
__class__
.
__name__
opt_unq_name
=
None
for
name
in
self
.
model
.
_optimizer
.
_accumulators
.
keys
():
accum_name
=
name
if
opt_name
is
None
else
name
[
len
(
opt_name
)
+
1
:]
for
param_name
,
state_var
in
self
.
model
.
_optimizer
.
_accumulators
[
name
].
items
():
if
opt_unq_name
is
None
:
# can not infer out the exact unique(opt_name),
# thus try to extract rather than generate
for
state_key
in
sorted
(
state
.
keys
(),
key
=
lambda
x
:
len
(
x
),
reverse
=
True
):
prefix
=
param_name
+
"_"
+
(
opt_cls_name
if
opt_name
is
None
else
opt_name
)
+
"_"
if
state_key
.
startswith
(
prefix
):
prefix_offset
=
state_key
[
len
(
prefix
):].
find
(
"_"
)
+
len
(
prefix
)
opt_unq_name
=
state_key
[
len
(
param_name
+
"_"
):
prefix_offset
]
# TODO: assert
# assert opt_unq_name is None
# gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
# always end with "_0" since the unique optimizer._name
dy_state_name
=
(
param_name
+
"_"
+
opt_unq_name
+
"_"
+
accum_name
+
"_0"
)
converted_state
[
state_var
.
name
]
=
converted_state
.
pop
(
dy_state_name
)
assert
var
.
name
in
converted_state
,
\
"variable [{}] is not in optimizer state file"
.
format
(
var
.
name
)
self
.
_set_var
(
var
,
state
[
var
.
name
])
self
.
_set_var
(
var
,
converted_
state
[
var
.
name
])
def
_set_var
(
self
,
var
,
ndarray
):
t
=
global_scope
().
find_var
(
var
.
name
).
get_tensor
()
...
...
@@ -275,6 +330,17 @@ class StaticGraphAdapter(object):
def
_make_program
(
self
,
inputs
):
prog
=
self
.
_orig_prog
.
clone
()
# change inputs to the same var in cloned program
inputs
=
fluid
.
layers
.
utils
.
map_structure
(
lambda
var
:
prog
.
global_block
().
var
(
var
.
name
),
inputs
)
# NOTE: When defining learning rate scheduling in static-graph, ops to
# increase the global step var and calculate learning rate would be
# prepended into _orig_prog. test program maked by `_orig_prog.clone`
# also would include these ops. Thus must prune these ops in test
# program, otherwise the global step would be changed in test.
if
self
.
mode
!=
'train'
:
for
op
in
list
(
prog
.
global_block
().
ops
):
prog
.
global_block
().
_remove_op
(
0
)
if
self
.
mode
==
'train'
and
self
.
model
.
_optimizer
.
_learning_rate_map
:
# HACK workaround learning rate map issue
lr_var
=
self
.
model
.
_optimizer
.
_learning_rate_map
[
self
.
_orig_prog
]
...
...
@@ -432,7 +498,50 @@ class DynamicGraphAdapter(object):
self
.
model
.
set_dict
(
params
)
if
self
.
model
.
_optimizer
is
None
or
optim
is
None
:
return
self
.
model
.
_optimizer
.
set_dict
(
optim
)
# If optimizer performs set_dict when state vars haven't been created,
# which would happen when set_dict before minimize, the state would be
# stored in optimizer._accumulators_holder and loaded lazily.
# To contrive this when loading from static-graph saved states, extend
# state dict to include keys named accoring to dygraph naming rules.
# TODO: if len(self.model._optimizer._accumulators) > 0
converted_state
=
dict
(
optim
)
opt_unq_name
=
self
.
model
.
_optimizer
.
_name
opt_cls_name
=
self
.
model
.
_optimizer
.
__class__
.
__name__
opt_name
=
opt_unq_name
[:
opt_unq_name
.
rfind
(
"_"
)]
# remove suffix idx
param_names
=
[
param
.
name
for
param
in
self
.
model
.
parameters
()]
for
var_name
,
state_var
in
sorted
(
optim
.
items
(),
key
=
lambda
x
:
len
(
x
[
0
]),
reverse
=
True
):
if
var_name
in
[
"@LR_DECAY_COUNTER@"
,
"global_step"
]:
# NOTE: dygraph saved global_step is 1 larger than that in
# static-graph, since the time of global_step to increase is
# different.
if
var_name
==
"@LR_DECAY_COUNTER@"
:
converted_state
[
"global_step"
]
=
np
.
array
(
converted_state
.
pop
(
"@LR_DECAY_COUNTER@"
))
+
1
else
:
# moment and other accumulators
# extend state dict to include promising dygraph names
for
param_name
in
param_names
:
if
var_name
.
startswith
(
param_name
+
"_"
+
opt_name
):
# when init optimizer with name
accum_name
=
var_name
[
len
(
param_name
+
"_"
+
opt_name
+
"_"
):]
elif
var_name
.
startswith
(
param_name
+
"_"
)
and
opt_name
==
opt_cls_name
:
# when init optimizer without name
accum_name
=
var_name
[
len
(
param_name
+
"_"
):]
else
:
continue
# remove suffix idx
accum_name
=
accum_name
[:
accum_name
.
rfind
(
"_"
)]
# state names always end with "_0" in dygraph because of the
# unique optimizer._name
dy_state_name
=
(
param_name
+
"_"
+
opt_unq_name
+
"_"
+
accum_name
+
"_0"
)
converted_state
[
dy_state_name
]
=
state_var
self
.
model
.
_optimizer
.
set_dict
(
converted_state
)
class
Model
(
fluid
.
dygraph
.
Layer
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录