Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
ca7c0a9a
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
ca7c0a9a
编写于
3月 09, 2020
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine accuracy
上级
a65ad557
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
80 addition
and
45 deletion
+80
-45
metrics.py
metrics.py
+25
-9
mnist.py
mnist.py
+6
-12
model.py
model.py
+49
-24
未找到文件。
metrics.py
浏览文件 @
ca7c0a9a
...
@@ -17,6 +17,7 @@ from __future__ import absolute_import
...
@@ -17,6 +17,7 @@ from __future__ import absolute_import
import
six
import
six
import
abc
import
abc
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid
as
fluid
import
logging
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
...
@@ -59,6 +60,12 @@ class Metric(object):
...
@@ -59,6 +60,12 @@ class Metric(object):
"""
"""
raise
NotImplementedError
(
"function 'accumulate' not implemented in {}."
.
format
(
self
.
__class__
.
__name__
))
raise
NotImplementedError
(
"function 'accumulate' not implemented in {}."
.
format
(
self
.
__class__
.
__name__
))
def
add_metric_op
(
self
,
pred
,
label
):
"""
Add process op for metric in program
"""
return
pred
,
label
class
Accuracy
(
Metric
):
class
Accuracy
(
Metric
):
"""
"""
...
@@ -71,19 +78,28 @@ class Accuracy(Metric):
...
@@ -71,19 +78,28 @@ class Accuracy(Metric):
self
.
maxk
=
max
(
topk
)
self
.
maxk
=
max
(
topk
)
self
.
reset
()
self
.
reset
()
def
update
(
self
,
pred
,
label
,
*
args
,
**
kwargs
):
def
add_metric_op
(
self
,
pred
,
label
,
*
args
,
**
kwargs
):
pred
=
np
.
argsort
(
pred
[
0
])[:,
::
-
1
][:,
:
self
.
maxk
]
pred
=
fluid
.
layers
.
argsort
(
pred
[
0
],
descending
=
True
)[
1
][:,
:
self
.
maxk
]
corr
=
(
pred
==
np
.
repeat
(
label
[
0
],
self
.
maxk
,
1
))
correct
=
pred
==
label
[
0
]
self
.
correct
=
np
.
append
(
self
.
correct
,
corr
,
axis
=
0
)
return
correct
def
update
(
self
,
correct
,
*
args
,
**
kwargs
):
accs
=
[]
for
i
,
k
in
enumerate
(
self
.
topk
):
num_corrects
=
correct
[:,
:
k
].
sum
()
num_samples
=
len
(
correct
)
accs
.
append
(
float
(
num_corrects
)
/
num_samples
)
self
.
total
[
i
]
+=
num_corrects
self
.
count
[
i
]
+=
num_samples
return
accs
def
reset
(
self
):
def
reset
(
self
):
self
.
correct
=
np
.
empty
((
0
,
self
.
maxk
),
dtype
=
"int32"
)
self
.
total
=
[
0.
]
*
len
(
self
.
topk
)
self
.
count
=
[
0
]
*
len
(
self
.
topk
)
def
accumulate
(
self
):
def
accumulate
(
self
):
res
=
[]
res
=
[]
num_samples
=
self
.
correct
.
shape
[
0
]
for
t
,
c
in
zip
(
self
.
total
,
self
.
count
):
for
k
in
self
.
topk
:
res
.
append
(
float
(
t
)
/
c
)
correct_k
=
self
.
correct
[:,
:
k
].
sum
()
res
.
append
(
round
(
100.0
*
correct_k
/
num_samples
,
2
))
return
res
return
res
mnist.py
浏览文件 @
ca7c0a9a
...
@@ -150,20 +150,16 @@ def main():
...
@@ -150,20 +150,16 @@ def main():
for
e
in
range
(
FLAGS
.
epoch
):
for
e
in
range
(
FLAGS
.
epoch
):
train_loss
=
0.0
train_loss
=
0.0
train_acc
=
0.0
val_loss
=
0.0
val_loss
=
0.0
val_acc
=
0.0
print
(
"======== train epoch {} ========"
.
format
(
e
))
print
(
"======== train epoch {} ========"
.
format
(
e
))
for
idx
,
batch
in
enumerate
(
train_loader
()):
for
idx
,
batch
in
enumerate
(
train_loader
()):
outputs
,
losse
s
=
model
.
train
(
batch
[
0
],
batch
[
1
],
device
=
'gpu'
,
losses
,
metric
s
=
model
.
train
(
batch
[
0
],
batch
[
1
],
device
=
'gpu'
,
device_ids
=
device_ids
)
device_ids
=
device_ids
)
acc
=
accuracy
(
outputs
[
0
],
batch
[
1
])[
0
]
train_loss
+=
np
.
sum
(
losses
)
train_loss
+=
np
.
sum
(
losses
)
train_acc
+=
acc
if
idx
%
10
==
0
:
if
idx
%
10
==
0
:
print
(
"{:04d}: loss {:0.3f} top1: {:0.3f}%"
.
format
(
print
(
"{:04d}: loss {:0.3f} top1: {:0.3f}%
top2: {:0.3f}%
"
.
format
(
idx
,
train_loss
/
(
idx
+
1
),
train_acc
/
(
idx
+
1
)
))
idx
,
train_loss
/
(
idx
+
1
),
metrics
[
0
][
0
],
metrics
[
0
][
1
]
))
for
metric
in
model
.
_metrics
:
for
metric
in
model
.
_metrics
:
res
=
metric
.
accumulate
()
res
=
metric
.
accumulate
()
print
(
"train epoch {:03d}: top1: {:0.3f}%, top2: {:0.3f}"
.
format
(
e
,
res
[
0
],
res
[
1
]))
print
(
"train epoch {:03d}: top1: {:0.3f}%, top2: {:0.3f}"
.
format
(
e
,
res
[
0
],
res
[
1
]))
...
@@ -171,15 +167,13 @@ def main():
...
@@ -171,15 +167,13 @@ def main():
print
(
"======== eval epoch {} ========"
.
format
(
e
))
print
(
"======== eval epoch {} ========"
.
format
(
e
))
for
idx
,
batch
in
enumerate
(
val_loader
()):
for
idx
,
batch
in
enumerate
(
val_loader
()):
outputs
,
losse
s
=
model
.
eval
(
batch
[
0
],
batch
[
1
],
device
=
'gpu'
,
losses
,
metric
s
=
model
.
eval
(
batch
[
0
],
batch
[
1
],
device
=
'gpu'
,
device_ids
=
device_ids
)
device_ids
=
device_ids
)
acc
=
accuracy
(
outputs
[
0
],
batch
[
1
])[
0
]
val_loss
+=
np
.
sum
(
losses
)
val_loss
+=
np
.
sum
(
losses
)
val_acc
+=
acc
if
idx
%
10
==
0
:
if
idx
%
10
==
0
:
print
(
"{:04d}: loss {:0.3f} top1: {:0.3f}%"
.
format
(
print
(
"{:04d}: loss {:0.3f} top1: {:0.3f}%
top2: {:0.3f}%
"
.
format
(
idx
,
val_loss
/
(
idx
+
1
),
val_acc
/
(
idx
+
1
)
))
idx
,
val_loss
/
(
idx
+
1
),
metrics
[
0
][
0
],
metrics
[
0
][
1
]
))
for
metric
in
model
.
_metrics
:
for
metric
in
model
.
_metrics
:
res
=
metric
.
accumulate
()
res
=
metric
.
accumulate
()
print
(
"eval epoch {:03d}: top1: {:0.3f}%, top2: {:0.3f}"
.
format
(
e
,
res
[
0
],
res
[
1
]))
print
(
"eval epoch {:03d}: top1: {:0.3f}%, top2: {:0.3f}"
.
format
(
e
,
res
[
0
],
res
[
1
]))
...
...
model.py
浏览文件 @
ca7c0a9a
...
@@ -45,6 +45,26 @@ def to_numpy(var):
...
@@ -45,6 +45,26 @@ def to_numpy(var):
return
np
.
array
(
t
)
return
np
.
array
(
t
)
def
flatten_list
(
l
):
assert
isinstance
(
l
,
list
),
"not a list"
outl
=
[]
splits
=
[]
for
sl
in
l
:
assert
isinstance
(
sl
,
list
),
"sub content not a list"
splits
.
append
(
len
(
sl
))
outl
+=
sl
return
outl
,
splits
def
restore_flatten_list
(
l
,
splits
):
outl
=
[]
for
split
in
splits
:
assert
len
(
l
)
>=
split
,
"list length invalid"
sl
,
l
=
l
[:
split
],
l
[
split
:]
outl
.
append
(
sl
)
return
outl
def
extract_args
(
func
):
def
extract_args
(
func
):
if
hasattr
(
inspect
,
'getfullargspec'
):
if
hasattr
(
inspect
,
'getfullargspec'
):
return
inspect
.
getfullargspec
(
func
)[
0
]
return
inspect
.
getfullargspec
(
func
)[
0
]
...
@@ -278,28 +298,26 @@ class StaticGraphAdapter(object):
...
@@ -278,28 +298,26 @@ class StaticGraphAdapter(object):
feed
[
v
.
name
]
=
labels
[
idx
]
feed
[
v
.
name
]
=
labels
[
idx
]
endpoints
=
self
.
_endpoints
[
self
.
mode
]
endpoints
=
self
.
_endpoints
[
self
.
mode
]
fetch_list
=
endpoints
[
'output'
]
+
endpoints
[
'label'
]
+
endpoints
[
'loss'
]
if
self
.
mode
==
'test'
:
num_output
=
len
(
endpoints
[
'output'
])
fetch_list
=
endpoints
[
'output'
]
num_label
=
len
(
endpoints
[
'label'
])
else
:
metric_list
,
metric_splits
=
flatten_list
(
endpoints
[
'metric'
])
fetch_list
=
endpoints
[
'loss'
]
+
metric_list
num_loss
=
len
(
endpoints
[
'loss'
])
rets
=
self
.
_executor
.
run
(
rets
=
self
.
_executor
.
run
(
compiled_prog
,
feed
=
feed
,
compiled_prog
,
feed
=
feed
,
fetch_list
=
fetch_list
,
fetch_list
=
fetch_list
,
return_numpy
=
False
)
return_numpy
=
False
)
# LoDTensor cannot be fetch as numpy directly
# LoDTensor cannot be fetch as numpy directly
rets
=
[
np
.
array
(
v
)
for
v
in
rets
]
rets
=
[
np
.
array
(
v
)
for
v
in
rets
]
outputs
=
rets
[:
num_output
]
labels
=
rets
[
num_output
:
num_output
+
num_label
]
losses
=
rets
[
num_output
+
num_label
:]
if
self
.
mode
==
'test'
:
if
self
.
mode
==
'test'
:
return
outputs
return
rets
[:]
elif
self
.
mode
==
'eval'
:
losses
=
rets
[:
num_loss
]
for
metric
in
self
.
model
.
_metrics
:
metric_states
=
restore_flatten_list
(
rets
[
num_loss
:],
metric_splits
)
metric
.
update
(
outputs
,
labels
)
metrics
=
[]
return
outputs
,
losses
for
metric
,
state
in
zip
(
self
.
model
.
_metrics
,
metric_states
):
else
:
# train
metrics
.
append
(
metric
.
update
(
*
state
))
for
metric
in
self
.
model
.
_metrics
:
return
losses
,
metrics
metric
.
update
(
outputs
,
labels
)
return
outputs
,
losses
def
_make_program
(
self
,
inputs
):
def
_make_program
(
self
,
inputs
):
prog
=
self
.
_orig_prog
.
clone
()
prog
=
self
.
_orig_prog
.
clone
()
...
@@ -314,6 +332,9 @@ class StaticGraphAdapter(object):
...
@@ -314,6 +332,9 @@ class StaticGraphAdapter(object):
label_vars
=
self
.
_infer_label_vars
(
outputs
)
label_vars
=
self
.
_infer_label_vars
(
outputs
)
self
.
_label_vars
[
self
.
mode
]
=
label_vars
self
.
_label_vars
[
self
.
mode
]
=
label_vars
losses
=
self
.
model
.
_loss_function
(
outputs
,
label_vars
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
label_vars
)
metrics
=
[]
for
metric
in
self
.
model
.
_metrics
:
metrics
.
append
(
to_list
(
metric
.
add_metric_op
(
outputs
,
label_vars
)))
if
self
.
mode
==
'train'
:
if
self
.
mode
==
'train'
:
self
.
_loss_endpoint
=
fluid
.
layers
.
sum
(
losses
)
self
.
_loss_endpoint
=
fluid
.
layers
.
sum
(
losses
)
self
.
model
.
_optimizer
.
minimize
(
self
.
_loss_endpoint
)
self
.
model
.
_optimizer
.
minimize
(
self
.
_loss_endpoint
)
...
@@ -322,8 +343,8 @@ class StaticGraphAdapter(object):
...
@@ -322,8 +343,8 @@ class StaticGraphAdapter(object):
self
.
_progs
[
self
.
mode
]
=
prog
self
.
_progs
[
self
.
mode
]
=
prog
self
.
_endpoints
[
self
.
mode
]
=
{
self
.
_endpoints
[
self
.
mode
]
=
{
"output"
:
outputs
,
"output"
:
outputs
,
"label"
:
label_vars
,
"loss"
:
losses
,
"loss"
:
losses
,
"metric"
:
metrics
,
}
}
def
_infer_input_vars
(
self
,
inputs
):
def
_infer_input_vars
(
self
,
inputs
):
...
@@ -421,16 +442,18 @@ class DynamicGraphAdapter(object):
...
@@ -421,16 +442,18 @@ class DynamicGraphAdapter(object):
self
.
mode
=
'train'
self
.
mode
=
'train'
inputs
=
to_list
(
inputs
)
inputs
=
to_list
(
inputs
)
labels
=
to_list
(
labels
)
labels
=
to_list
(
labels
)
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
]
)
outputs
=
to_list
(
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
final_loss
=
fluid
.
layers
.
sum
(
losses
)
final_loss
=
fluid
.
layers
.
sum
(
losses
)
final_loss
.
backward
()
final_loss
.
backward
()
self
.
model
.
_optimizer
.
minimize
(
final_loss
)
self
.
model
.
_optimizer
.
minimize
(
final_loss
)
self
.
model
.
clear_gradients
()
self
.
model
.
clear_gradients
()
metrics
=
[]
for
metric
in
self
.
model
.
_metrics
:
for
metric
in
self
.
model
.
_metrics
:
metric
.
update
([
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
labels
)
metric_outs
=
metric
.
add_metric_op
(
outputs
,
[
to_variable
(
l
)
for
l
in
labels
])
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
\
m
=
metric
.
update
(
*
[
to_numpy
(
m
)
for
m
in
to_list
(
metric_outs
)])
[
to_numpy
(
l
)
for
l
in
losses
]
metrics
.
append
(
m
)
return
[
to_numpy
(
l
)
for
l
in
losses
],
metrics
def
eval
(
self
,
inputs
,
labels
,
device
=
'CPU'
,
device_ids
=
None
):
def
eval
(
self
,
inputs
,
labels
,
device
=
'CPU'
,
device_ids
=
None
):
assert
self
.
model
.
_loss_function
,
\
assert
self
.
model
.
_loss_function
,
\
...
@@ -439,12 +462,14 @@ class DynamicGraphAdapter(object):
...
@@ -439,12 +462,14 @@ class DynamicGraphAdapter(object):
self
.
mode
=
'eval'
self
.
mode
=
'eval'
inputs
=
to_list
(
inputs
)
inputs
=
to_list
(
inputs
)
labels
=
to_list
(
labels
)
labels
=
to_list
(
labels
)
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
]
)
outputs
=
to_list
(
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
metrics
=
[]
for
metric
in
self
.
model
.
_metrics
:
for
metric
in
self
.
model
.
_metrics
:
metric
.
update
([
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
labels
)
metric_outs
=
metric
.
add_metric_op
(
outputs
,
[
to_variable
(
l
)
for
l
in
labels
])
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
\
m
=
metric
.
update
(
*
[
to_numpy
(
m
)
for
m
in
to_list
(
metric_outs
)])
[
to_numpy
(
l
)
for
l
in
losses
]
metrics
.
append
(
m
)
return
[
to_numpy
(
l
)
for
l
in
losses
],
metrics
def
test
(
self
,
inputs
,
device
=
'CPU'
,
device_ids
=
None
):
def
test
(
self
,
inputs
,
device
=
'CPU'
,
device_ids
=
None
):
super
(
Model
,
self
.
model
).
eval
()
super
(
Model
,
self
.
model
).
eval
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录