Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
b8cb839a
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b8cb839a
编写于
9月 17, 2020
作者:
L
LielinJiang
提交者:
GitHub
9月 17, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #96 from LielinJiang/adapt-to-2.0-api
Adapt some model to 2.0 api
上级
f53f360a
64c766ac
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
134 addition
and
126 deletion
+134
-126
handwritten_number_recognition/mnist.py
handwritten_number_recognition/mnist.py
+15
-17
image_classification/imagenet_dataset.py
image_classification/imagenet_dataset.py
+2
-3
image_classification/main.py
image_classification/main.py
+17
-24
style-transfer/README.md
style-transfer/README.md
+34
-27
style-transfer/style-transfer.ipynb
style-transfer/style-transfer.ipynb
+41
-34
style-transfer/style_transfer.py
style-transfer/style_transfer.py
+25
-21
未找到文件。
handwritten_number_recognition/mnist.py
浏览文件 @
b8cb839a
...
...
@@ -16,38 +16,36 @@ from __future__ import division
from
__future__
import
print_function
import
argparse
import
paddle
from
paddle
import
fluid
from
paddle.fluid.optimizer
import
Momentum
from
paddle.
incubate.hapi.datasets.mnist
import
MNIST
as
MnistDataset
from
paddle.
vision.datasets.mnist
import
MNIST
from
paddle.incubate.hapi.model
import
Input
,
set_device
from
paddle.incubate.hapi.loss
import
CrossEntropy
from
paddle.incubate.hapi.metrics
import
Accuracy
from
paddle.incubate.hapi.vision.models
import
LeNet
from
paddle.vision.models
import
LeNet
from
paddle.static
import
InputSpec
as
Input
def
main
():
device
=
set_device
(
FLAGS
.
device
)
fluid
.
enable_dygraph
(
device
)
if
FLAGS
.
dynamic
else
None
device
=
paddle
.
set_device
(
FLAGS
.
device
)
paddle
.
disable_static
(
device
)
if
FLAGS
.
dynamic
else
None
train_dataset
=
M
nistDataset
(
mode
=
'train'
)
val_dataset
=
M
nistDataset
(
mode
=
'test'
)
train_dataset
=
M
NIST
(
mode
=
'train'
)
val_dataset
=
M
NIST
(
mode
=
'test'
)
inputs
=
[
Input
([
None
,
1
,
28
,
28
],
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
inputs
=
[
Input
(
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
,
name
=
'image'
)]
labels
=
[
Input
(
shape
=
[
None
,
1
],
dtype
=
'int64'
,
name
=
'label'
)]
net
=
LeNet
()
model
=
paddle
.
Model
(
net
,
inputs
,
labels
)
model
=
LeNet
()
optim
=
Momentum
(
learning_rate
=
FLAGS
.
lr
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
model
.
prepare
(
optim
,
CrossEntropy
(),
Accuracy
(
topk
=
(
1
,
2
)),
inputs
,
labels
,
device
=
FLAGS
.
device
)
paddle
.
nn
.
CrossEntropyLoss
(),
paddle
.
metric
.
Accuracy
(
topk
=
(
1
,
2
)))
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
...
...
image_classification/imagenet_dataset.py
浏览文件 @
b8cb839a
...
...
@@ -18,9 +18,8 @@ import math
import
random
import
numpy
as
np
from
paddle.incubate.hapi.datasets
import
DatasetFolder
from
paddle.incubate.hapi.vision.transforms
import
transforms
from
paddle
import
fluid
from
paddle.vision.datasets
import
DatasetFolder
from
paddle.vision.transforms
import
transforms
class
ImageNetDataset
(
DatasetFolder
):
...
...
image_classification/main.py
浏览文件 @
b8cb839a
...
...
@@ -15,25 +15,19 @@
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
contextlib
import
os
import
time
import
math
import
argparse
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.io
import
BatchSampler
,
DataLoader
from
paddle.incubate.hapi.model
import
Input
,
set_device
from
paddle.incubate.hapi.loss
import
CrossEntropy
from
paddle.incubate.hapi.distributed
import
DistributedBatchSampler
from
paddle.incubate.hapi.metrics
import
Accuracy
import
paddle.incubate.hapi.vision.models
as
models
import
paddle.vision.models
as
models
from
paddle.static
import
InputSpec
as
Input
from
imagenet_dataset
import
ImageNetDataset
from
paddle.distributed
import
ParallelEnv
from
paddle.io
import
BatchSampler
,
DataLoader
,
DistributedBatchSampler
def
make_optimizer
(
step_per_epoch
,
parameter_list
=
None
):
...
...
@@ -72,21 +66,23 @@ def make_optimizer(step_per_epoch, parameter_list=None):
def
main
():
device
=
set_device
(
FLAGS
.
device
)
fluid
.
enable_dygraph
(
device
)
if
FLAGS
.
dynamic
else
None
device
=
paddle
.
set_device
(
FLAGS
.
device
)
paddle
.
disable_static
(
device
)
if
FLAGS
.
dynamic
else
None
model_list
=
[
x
for
x
in
models
.
__dict__
[
"__all__"
]]
assert
FLAGS
.
arch
in
model_list
,
"Expected FLAGS.arch in {}, but received {}"
.
format
(
model_list
,
FLAGS
.
arch
)
model
=
models
.
__dict__
[
FLAGS
.
arch
](
pretrained
=
FLAGS
.
eval_only
and
not
FLAGS
.
resume
)
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
net
=
models
.
__dict__
[
FLAGS
.
arch
](
pretrained
=
FLAGS
.
eval_only
and
not
FLAGS
.
resume
)
inputs
=
[
Input
([
None
,
3
,
224
,
224
],
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
model
=
paddle
.
Model
(
net
,
inputs
,
labels
)
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
train_dataset
=
ImageNetDataset
(
os
.
path
.
join
(
FLAGS
.
data
,
'train'
),
mode
=
'train'
,
...
...
@@ -106,11 +102,8 @@ def main():
model
.
prepare
(
optim
,
CrossEntropy
(),
Accuracy
(
topk
=
(
1
,
5
)),
inputs
,
labels
,
FLAGS
.
device
)
paddle
.
nn
.
CrossEntropyLoss
(),
paddle
.
metric
.
Accuracy
(
topk
=
(
1
,
5
)))
if
FLAGS
.
eval_only
:
model
.
evaluate
(
...
...
style-transfer/README.md
浏览文件 @
b8cb839a
...
...
@@ -15,9 +15,9 @@
```
python
# tensor shape is [1, c, h, w]
_
,
c
,
h
,
w
=
tensor
.
shape
tensor
=
fluid
.
layers
.
reshape
(
tensor
,
[
c
,
h
*
w
])
tensor
=
paddle
.
reshape
(
tensor
,
[
c
,
h
*
w
])
# gram matrix with shape: [c, c]
gram_matrix
=
fluid
.
layers
.
matmul
(
tensor
,
fluid
.
layers
.
transpose
(
tensor
,
[
1
,
0
]))
gram_matrix
=
paddle
.
matmul
(
tensor
,
paddle
.
transpose
(
tensor
,
[
1
,
0
]))
```
最终风格迁移的问题转化为优化上述的两个欧式距离的问题。这里要注意的是,我们使用一个在imagenet上预训练好的模型vgg16,并且固定参数,优化器只更新输入的生成图像的值。
...
...
@@ -32,12 +32,11 @@ gram_matrix = fluid.layers.matmul(tensor, fluid.layers.transpose(tensor, [1, 0])
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
paddle.incubate.hapi.model
import
Model
,
Loss
import
paddle
from
paddle.
incubate.hapi.
vision.models
import
vgg16
from
paddle.
incubate.hapi.
vision.transforms
import
transforms
from
paddle.vision.models
import
vgg16
from
paddle.vision.transforms
import
transforms
from
paddle
import
fluid
from
paddle.fluid.io
import
Dataset
import
cv2
import
copy
...
...
@@ -49,7 +48,7 @@ from .style_transfer import load_image, image_restore
```
python
# 启动动态图模式
fluid
.
enable_dygraph
()
paddle
.
disable_static
()
```
```
python
...
...
@@ -77,22 +76,23 @@ ax2.imshow(image_restore(style))
```
python
# 定义风格迁移模型,使用在imagenet上预训练好的vgg16作为基础模型
class
StyleTransferModel
(
Model
):
class
StyleTransferModel
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
StyleTransferModel
,
self
).
__init__
()
# pretrained设置为true,会自动下载imagenet上的预训练权重并加载
vgg
=
vgg16
(
pretrained
=
True
)
self
.
base_model
=
vgg
.
features
for
p
in
self
.
base_model
.
parameters
():
p
.
stop_gradient
=
True
p
.
stop_gradient
=
True
self
.
layers
=
{
'0'
:
'conv1_1'
,
'3
'
:
'conv2_1'
,
'6
'
:
'conv3_1'
,
'10
'
:
'conv4_1'
,
'11
'
:
'conv4_2'
,
## content representation
'1
4'
:
'conv5_1'
}
'0'
:
'conv1_1'
,
'5
'
:
'conv2_1'
,
'10
'
:
'conv3_1'
,
'17
'
:
'conv4_1'
,
'19
'
:
'conv4_2'
,
## content representation
'2
4'
:
'conv5_1'
}
def
forward
(
self
,
image
):
outputs
=
[]
...
...
@@ -106,27 +106,33 @@ class StyleTransferModel(Model):
```
python
# 定义风格迁移个损失函数
class
StyleTransferLoss
(
Loss
):
def
__init__
(
self
,
content_loss_weight
=
1
,
style_loss_weight
=
1e5
,
style_weights
=
[
1.0
,
0.8
,
0.5
,
0.3
,
0.1
]):
class
StyleTransferLoss
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
content_loss_weight
=
1
,
style_loss_weight
=
1e5
,
style_weights
=
[
1.0
,
0.8
,
0.5
,
0.3
,
0.1
]):
super
(
StyleTransferLoss
,
self
).
__init__
()
self
.
content_loss_weight
=
content_loss_weight
self
.
style_loss_weight
=
style_loss_weight
self
.
style_weights
=
style_weights
def
forward
(
self
,
outputs
,
labels
):
def
forward
(
self
,
*
features
):
outputs
=
features
[:
6
]
labels
=
features
[
6
:]
content_features
=
labels
[
-
1
]
style_features
=
labels
[:
-
1
]
# 计算图像内容相似度的loss
content_loss
=
fluid
.
layers
.
mean
((
outputs
[
-
2
]
-
content_features
)
**
2
)
content_loss
=
paddle
.
mean
((
outputs
[
-
2
]
-
content_features
)
**
2
)
# 计算风格相似度的loss
style_loss
=
0
style_grams
=
[
self
.
gram_matrix
(
feat
)
for
feat
in
style_features
]
style_grams
=
[
self
.
gram_matrix
(
feat
)
for
feat
in
style_features
]
style_weights
=
self
.
style_weights
for
i
,
weight
in
enumerate
(
style_weights
):
target_gram
=
self
.
gram_matrix
(
outputs
[
i
])
layer_loss
=
weight
*
fluid
.
layers
.
mean
((
target_gram
-
style_grams
[
i
])
**
2
)
layer_loss
=
weight
*
paddle
.
mean
((
target_gram
-
style_grams
[
i
])
**
2
)
b
,
d
,
h
,
w
=
outputs
[
i
].
shape
style_loss
+=
layer_loss
/
(
d
*
h
*
w
)
...
...
@@ -135,9 +141,9 @@ class StyleTransferLoss(Loss):
def
gram_matrix
(
self
,
A
):
if
len
(
A
.
shape
)
==
4
:
batch_size
,
c
,
h
,
w
=
A
.
shape
A
=
fluid
.
layers
.
reshape
(
A
,
(
c
,
h
*
w
))
GA
=
fluid
.
layers
.
matmul
(
A
,
fluid
.
layers
.
transpose
(
A
,
[
1
,
0
]))
_
,
c
,
h
,
w
=
A
.
shape
A
=
paddle
.
reshape
(
A
,
(
c
,
h
*
w
))
GA
=
paddle
.
matmul
(
A
,
paddle
.
transpose
(
A
,
[
1
,
0
]))
return
GA
```
...
...
@@ -145,7 +151,8 @@ class StyleTransferLoss(Loss):
```
python
# 创建模型
model
=
StyleTransferModel
()
net
=
StyleTransferModel
()
model
=
paddle
.
Model
(
net
)
```
...
...
@@ -157,7 +164,7 @@ style_loss = StyleTransferLoss()
```
python
# 使用内容图像初始化要生成的图像
target
=
Model
.
create_parameter
(
model
,
shape
=
content
.
shape
)
target
=
net
.
create_parameter
(
shape
=
content
.
shape
)
target
.
set_value
(
content
.
numpy
())
```
...
...
style-transfer/style-transfer.ipynb
浏览文件 @
b8cb839a
...
...
@@ -36,12 +36,11 @@
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"
from hapi.model import Model, Loss
\n",
"
import paddle
\n",
"\n",
"from
hapi
.vision.models import vgg16\n",
"from
hapi
.vision.transforms import transforms\n",
"from
paddle
.vision.models import vgg16\n",
"from
paddle
.vision.transforms import transforms\n",
"from paddle import fluid\n",
"from paddle.fluid.io import Dataset\n",
"\n",
"import cv2\n",
"import copy"
...
...
@@ -54,7 +53,7 @@
"outputs": [],
"source": [
"# 启动动态图模式\n",
"
fluid.enable_dygraph
()"
"
paddle.disable_static
()"
]
},
{
...
...
@@ -67,9 +66,9 @@
"```python\n",
"# tensor shape is [1, c, h, w]\n",
"_, c, h, w = tensor.shape\n",
"tensor =
fluid.layers
.reshape(tensor, [c, h * w])\n",
"tensor =
paddle
.reshape(tensor, [c, h * w])\n",
"# gram matrix with shape: [c, c]\n",
"gram_matrix =
fluid.layers.matmul(tensor, fluid.layers
.transpose(tensor, [1, 0]))\n",
"gram_matrix =
paddle.matmul(tensor, paddle
.transpose(tensor, [1, 0]))\n",
"```\n",
"\n",
"最终风格迁移的问题转化为优化上述的两个欧式距离的问题。这里要注意的是,我们使用一个在imagenet上预训练好的模型vgg16,并且固定参数,优化器只更新输入的生成图像的值。"
...
...
@@ -176,23 +175,24 @@
"outputs": [],
"source": [
"# 定义风格迁移模型,使用在imagenet上预训练好的vgg16作为基础模型\n",
"class StyleTransferModel(
Model
):\n",
"class StyleTransferModel(
paddle.nn.Layer
):\n",
" def __init__(self):\n",
" super(StyleTransferModel, self).__init__()\n",
" # pretrained设置为true,会自动下载imagenet上的预训练权重并加载\n",
" vgg = vgg16(pretrained=True)\n",
" self.base_model = vgg.features\n",
"\n",
" for p in self.base_model.parameters():\n",
" p.stop_gradient
=
True\n",
" p.stop_gradient
=
True\n",
" self.layers = {\n",
"
'0': 'conv1_1',\n",
"
'3': 'conv2_1',
\n",
"
'6': 'conv3_1',
\n",
"
'10
': 'conv4_1',\n",
"
'11
': 'conv4_2', ## content representation\n",
"
'1
4': 'conv5_1'\n",
"
}\n",
"
\n",
" '0': 'conv1_1',\n",
"
'5': 'conv2_1',
\n",
"
'10': 'conv3_1',
\n",
"
'17
': 'conv4_1',\n",
"
'19
': 'conv4_2', ## content representation\n",
"
'2
4': 'conv5_1'\n",
" }\n",
"\n",
" def forward(self, image):\n",
" outputs = []\n",
" for name, layer in self.base_model.named_sublayers():\n",
...
...
@@ -208,38 +208,44 @@
"metadata": {},
"outputs": [],
"source": [
"class StyleTransferLoss(Loss):\n",
" def __init__(self, content_loss_weight=1, style_loss_weight=1e5, style_weights=[1.0, 0.8, 0.5, 0.3, 0.1]):\n",
"class StyleTransferLoss(paddle.nn.Layer):\n",
" def __init__(self,\n",
" content_loss_weight=1,\n",
" style_loss_weight=1e5,\n",
" style_weights=[1.0, 0.8, 0.5, 0.3, 0.1]):\n",
" super(StyleTransferLoss, self).__init__()\n",
" self.content_loss_weight = content_loss_weight\n",
" self.style_loss_weight = style_loss_weight\n",
" self.style_weights = style_weights\n",
" \n",
" def forward(self, outputs, labels):\n",
"\n",
" def forward(self, *features):\n",
" outputs = features[:6]\n",
" labels = features[6:]\n",
" content_features = labels[-1]\n",
" style_features = labels[:-1]\n",
"
\n",
"\n",
" # 计算图像内容相似度的loss\n",
" content_loss =
fluid.layers
.mean((outputs[-2] - content_features)**2)\n",
"
\n",
" content_loss =
paddle
.mean((outputs[-2] - content_features)**2)\n",
"\n",
" # 计算风格相似度的loss\n",
" style_loss = 0\n",
" style_grams = [self.gram_matrix(feat) for feat in style_features
]\n",
" style_grams = [self.gram_matrix(feat) for feat in style_features]\n",
" style_weights = self.style_weights\n",
" for i, weight in enumerate(style_weights):\n",
" target_gram = self.gram_matrix(outputs[i])\n",
" layer_loss = weight * fluid.layers.mean((target_gram - style_grams[i])**2)\n",
" layer_loss = weight * paddle.mean((target_gram - style_grams[\n",
" i])**2)\n",
" b, d, h, w = outputs[i].shape\n",
" style_loss += layer_loss / (d * h * w)\n",
"
\n",
"\n",
" total_loss = self.content_loss_weight * content_loss + self.style_loss_weight * style_loss\n",
" return total_loss\n",
"
\n",
"\n",
" def gram_matrix(self, A):\n",
" if len(A.shape) == 4:\n",
"
batch_size
, c, h, w = A.shape\n",
" A =
fluid.layers.reshape(A, (c, h*
w))\n",
" GA =
fluid.layers.matmul(A, fluid.layers
.transpose(A, [1, 0]))\n",
"
_
, c, h, w = A.shape\n",
" A =
paddle.reshape(A, (c, h *
w))\n",
" GA =
paddle.matmul(A, paddle
.transpose(A, [1, 0]))\n",
"\n",
" return GA"
]
...
...
@@ -260,7 +266,8 @@
],
"source": [
"# 创建模型\n",
"model = StyleTransferModel()"
"net = StyleTransferModel()\n",
"model = paddle.Model(net)"
]
},
{
...
...
@@ -280,7 +287,7 @@
"outputs": [],
"source": [
"# 使用内容图像初始化要生成的图像\n",
"target =
Model.create_parameter(model,
shape=content.shape)\n",
"target =
net.create_parameter(
shape=content.shape)\n",
"target.set_value(content.numpy())"
]
},
...
...
@@ -586,7 +593,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.
6
"
"version": "3.7.
5
"
}
},
"nbformat": 4,
style-transfer/style_transfer.py
浏览文件 @
b8cb839a
...
...
@@ -3,12 +3,11 @@ import argparse
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
paddle.incubate.hapi.model
import
Model
,
Loss
import
paddle
from
paddle.
incubate.hapi.
vision.models
import
vgg16
from
paddle.
incubate.hapi.
vision.transforms
import
transforms
from
paddle.vision.models
import
vgg16
from
paddle.vision.transforms
import
transforms
from
paddle
import
fluid
from
paddle.fluid.io
import
Dataset
import
cv2
import
copy
...
...
@@ -25,7 +24,7 @@ def load_image(image_path, max_size=400, shape=None):
transforms
.
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
])
])
image
=
transform
(
image
)[
np
.
newaxis
,
:
3
,
:,
:]
image
=
fluid
.
dygraph
.
to_variable
(
image
)
image
=
paddle
.
to_tensor
(
image
)
return
image
...
...
@@ -39,21 +38,22 @@ def image_restore(image):
return
image
class
StyleTransferModel
(
Model
):
class
StyleTransferModel
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
StyleTransferModel
,
self
).
__init__
()
# pretrained设置为true,会自动下载imagenet上的预训练权重并加载
vgg
=
vgg16
(
pretrained
=
True
)
self
.
base_model
=
vgg
.
features
for
p
in
self
.
base_model
.
parameters
():
p
.
stop_gradient
=
True
self
.
layers
=
{
'0'
:
'conv1_1'
,
'
3
'
:
'conv2_1'
,
'
6
'
:
'conv3_1'
,
'1
0
'
:
'conv4_1'
,
'1
1
'
:
'conv4_2'
,
## content representation
'
1
4'
:
'conv5_1'
'
5
'
:
'conv2_1'
,
'
10
'
:
'conv3_1'
,
'1
7
'
:
'conv4_1'
,
'1
9
'
:
'conv4_2'
,
## content representation
'
2
4'
:
'conv5_1'
}
def
forward
(
self
,
image
):
...
...
@@ -65,7 +65,7 @@ class StyleTransferModel(Model):
return
outputs
class
StyleTransferLoss
(
Loss
):
class
StyleTransferLoss
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
content_loss_weight
=
1
,
style_loss_weight
=
1e5
,
...
...
@@ -75,12 +75,14 @@ class StyleTransferLoss(Loss):
self
.
style_loss_weight
=
style_loss_weight
self
.
style_weights
=
style_weights
def
forward
(
self
,
outputs
,
labels
):
def
forward
(
self
,
*
features
):
outputs
=
features
[:
6
]
labels
=
features
[
6
:]
content_features
=
labels
[
-
1
]
style_features
=
labels
[:
-
1
]
# 计算图像内容相似度的loss
content_loss
=
fluid
.
layers
.
mean
((
outputs
[
-
2
]
-
content_features
)
**
2
)
content_loss
=
paddle
.
mean
((
outputs
[
-
2
]
-
content_features
)
**
2
)
# 计算风格相似度的loss
style_loss
=
0
...
...
@@ -88,8 +90,8 @@ class StyleTransferLoss(Loss):
style_weights
=
self
.
style_weights
for
i
,
weight
in
enumerate
(
style_weights
):
target_gram
=
self
.
gram_matrix
(
outputs
[
i
])
layer_loss
=
weight
*
fluid
.
layers
.
mean
((
target_gram
-
style_grams
[
i
])
**
2
)
layer_loss
=
weight
*
paddle
.
mean
((
target_gram
-
style_grams
[
i
])
**
2
)
b
,
d
,
h
,
w
=
outputs
[
i
].
shape
style_loss
+=
layer_loss
/
(
d
*
h
*
w
)
...
...
@@ -99,24 +101,26 @@ class StyleTransferLoss(Loss):
def
gram_matrix
(
self
,
A
):
if
len
(
A
.
shape
)
==
4
:
_
,
c
,
h
,
w
=
A
.
shape
A
=
fluid
.
layers
.
reshape
(
A
,
(
c
,
h
*
w
))
GA
=
fluid
.
layers
.
matmul
(
A
,
fluid
.
layers
.
transpose
(
A
,
[
1
,
0
]))
A
=
paddle
.
reshape
(
A
,
(
c
,
h
*
w
))
GA
=
paddle
.
matmul
(
A
,
paddle
.
transpose
(
A
,
[
1
,
0
]))
return
GA
def
main
():
# 启动动态图模式
fluid
.
enable_dygraph
()
paddle
.
disable_static
()
content
=
load_image
(
FLAGS
.
content_image
)
style
=
load_image
(
FLAGS
.
style_image
,
shape
=
tuple
(
content
.
shape
[
-
2
:]))
model
=
StyleTransferModel
()
net
=
StyleTransferModel
()
model
=
paddle
.
Model
(
net
)
style_loss
=
StyleTransferLoss
()
# 使用内容图像初始化要生成的图像
target
=
Model
.
create_parameter
(
model
,
shape
=
content
.
shape
)
target
=
net
.
create_parameter
(
shape
=
content
.
shape
)
target
.
set_value
(
content
.
numpy
())
optimizer
=
fluid
.
optimizer
.
Adam
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录