提交 b735e353 编写于 作者: D dengkaipeng

update yolov3 use new API. test=develop

上级 931564e5
...@@ -12,14 +12,14 @@ ...@@ -12,14 +12,14 @@
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay from paddle.fluid.regularizer import L2Decay
from paddle.static import InputSpec
from paddle.fluid.dygraph.nn import Conv2D, BatchNorm from paddle.fluid.dygraph.nn import Conv2D, BatchNorm
from paddle.utils.download import get_weights_path_from_url
from paddle.incubate.hapi.model import Model
from paddle.incubate.hapi.download import get_weights_path_from_url
__all__ = ['DarkNet', 'darknet53'] __all__ = ['DarkNet', 'darknet53']
...@@ -131,7 +131,7 @@ class LayerWarp(fluid.dygraph.Layer): ...@@ -131,7 +131,7 @@ class LayerWarp(fluid.dygraph.Layer):
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])} DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
class DarkNet(Model): class DarkNet(fluid.dygraph.Layer):
"""DarkNet model from """DarkNet model from
`"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_ `"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_
...@@ -190,7 +190,8 @@ def _darknet(num_layers=53, input_channels=3, pretrained=True): ...@@ -190,7 +190,8 @@ def _darknet(num_layers=53, input_channels=3, pretrained=True):
weight_path = get_weights_path_from_url(*(pretrain_infos[num_layers])) weight_path = get_weights_path_from_url(*(pretrain_infos[num_layers]))
assert weight_path.endswith('.pdparams'), \ assert weight_path.endswith('.pdparams'), \
"suffix of weight must be .pdparams" "suffix of weight must be .pdparams"
model.load(weight_path[:-9]) weight_dict, _ = fluid.load_dygraph(weight_path[:-9])
model.set_dict(weight_dict)
return model return model
......
...@@ -20,12 +20,11 @@ import argparse ...@@ -20,12 +20,11 @@ import argparse
import numpy as np import numpy as np
from PIL import Image from PIL import Image
import paddle
from paddle import fluid from paddle import fluid
from paddle.fluid.optimizer import Momentum from paddle.fluid.optimizer import Momentum
from paddle.io import DataLoader from paddle.io import DataLoader
from paddle.incubate.hapi.model import Model, Input, set_device
from modeling import yolov3_darknet53, YoloLoss from modeling import yolov3_darknet53, YoloLoss
from transforms import * from transforms import *
from utils import print_arguments from utils import print_arguments
...@@ -36,6 +35,7 @@ logger = logging.getLogger(__name__) ...@@ -36,6 +35,7 @@ logger = logging.getLogger(__name__)
IMAGE_MEAN = [0.485, 0.456, 0.406] IMAGE_MEAN = [0.485, 0.456, 0.406]
IMAGE_STD = [0.229, 0.224, 0.225] IMAGE_STD = [0.229, 0.224, 0.225]
NUM_MAX_BOXES = 50
def get_save_image_name(output_dir, image_path): def get_save_image_name(output_dir, image_path):
...@@ -62,24 +62,18 @@ def load_labels(label_list, with_background=True): ...@@ -62,24 +62,18 @@ def load_labels(label_list, with_background=True):
def main(): def main():
device = set_device(FLAGS.device) device = paddle.set_device(FLAGS.device)
fluid.enable_dygraph(device) if FLAGS.dynamic else None paddle.disable_static(device) if FLAGS.dynamic else None
inputs = [
Input(
[None, 1], 'int64', name='img_id'), Input(
[None, 2], 'int32', name='img_shape'), Input(
[None, 3, None, None], 'float32', name='image')
]
cat2name = load_labels(FLAGS.label_list, with_background=False) cat2name = load_labels(FLAGS.label_list, with_background=False)
model = yolov3_darknet53( model = yolov3_darknet53(
num_classes=len(cat2name), num_classes=len(cat2name),
num_max_boxes=NUM_MAX_BOXES,
model_mode='test', model_mode='test',
pretrained=FLAGS.weights is None) pretrained=FLAGS.weights is None)
model.prepare(inputs=inputs, device=FLAGS.device) model.prepare()
if FLAGS.weights is not None: if FLAGS.weights is not None:
model.load(FLAGS.weights, reset_optimizer=True) model.load(FLAGS.weights, reset_optimizer=True)
......
...@@ -21,13 +21,11 @@ import os ...@@ -21,13 +21,11 @@ import os
import numpy as np import numpy as np
import paddle
from paddle import fluid from paddle import fluid
from paddle.fluid.optimizer import Momentum from paddle.fluid.optimizer import Momentum
from paddle.io import DataLoader from paddle.io import DataLoader, DistributedBatchSampler
from paddle.vision.transforms import Compose, BatchCompose
from paddle.incubate.hapi.model import Model, Input, set_device
from paddle.incubate.hapi.distributed import DistributedBatchSampler
from paddle.incubate.hapi.vision.transforms import Compose, BatchCompose
from modeling import yolov3_darknet53, YoloLoss from modeling import yolov3_darknet53, YoloLoss
from coco import COCODataset from coco import COCODataset
...@@ -61,22 +59,8 @@ def make_optimizer(step_per_epoch, parameter_list=None): ...@@ -61,22 +59,8 @@ def make_optimizer(step_per_epoch, parameter_list=None):
def main(): def main():
device = set_device(FLAGS.device) device = paddle.set_device(FLAGS.device)
fluid.enable_dygraph(device) if FLAGS.dynamic else None paddle.disable_static(device) if FLAGS.dynamic else None
inputs = [
Input(
[None, 1], 'int64', name='img_id'), Input(
[None, 2], 'int32', name='img_shape'), Input(
[None, 3, None, None], 'float32', name='image')
]
labels = [
Input(
[None, NUM_MAX_BOXES, 4], 'float32', name='gt_bbox'), Input(
[None, NUM_MAX_BOXES], 'int32', name='gt_label'), Input(
[None, NUM_MAX_BOXES], 'float32', name='gt_score')
]
if not FLAGS.eval_only: # training mode if not FLAGS.eval_only: # training mode
train_transform = Compose([ train_transform = Compose([
...@@ -129,6 +113,7 @@ def main(): ...@@ -129,6 +113,7 @@ def main():
pretrained = FLAGS.eval_only and FLAGS.weights is None pretrained = FLAGS.eval_only and FLAGS.weights is None
model = yolov3_darknet53( model = yolov3_darknet53(
num_classes=dataset.num_classes, num_classes=dataset.num_classes,
num_max_boxes=NUM_MAX_BOXES,
model_mode='eval' if FLAGS.eval_only else 'train', model_mode='eval' if FLAGS.eval_only else 'train',
pretrained=pretrained) pretrained=pretrained)
...@@ -140,11 +125,7 @@ def main(): ...@@ -140,11 +125,7 @@ def main():
len(batch_sampler), parameter_list=model.parameters()) len(batch_sampler), parameter_list=model.parameters())
model.prepare( model.prepare(
optim, optimizer=optim, loss=YoloLoss(num_classes=dataset.num_classes))
YoloLoss(num_classes=dataset.num_classes),
inputs=inputs,
labels=labels,
device=FLAGS.device)
# NOTE: we implement COCO metric of YOLOv3 model here, separately # NOTE: we implement COCO metric of YOLOv3 model here, separately
# from 'prepare' and 'fit' framework for follwing reason: # from 'prepare' and 'fit' framework for follwing reason:
......
...@@ -15,14 +15,15 @@ ...@@ -15,14 +15,15 @@
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, BatchNorm from paddle.fluid.dygraph.nn import Conv2D, BatchNorm
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay from paddle.fluid.regularizer import L2Decay
from paddle.incubate.hapi.model import Model from paddle.static import InputSpec
from paddle.incubate.hapi.loss import Loss from paddle.utils.download import get_weights_path_from_url
from paddle.incubate.hapi.download import get_weights_path_from_url
from darknet import darknet53 from darknet import darknet53
__all__ = ['YoloLoss', 'YOLOv3', 'yolov3_darknet53'] __all__ = ['YoloLoss', 'YOLOv3', 'yolov3_darknet53']
...@@ -125,7 +126,7 @@ class YoloDetectionBlock(fluid.dygraph.Layer): ...@@ -125,7 +126,7 @@ class YoloDetectionBlock(fluid.dygraph.Layer):
return route, tip return route, tip
class YOLOv3(Model): class YOLOv3(fluid.dygraph.Layer):
"""YOLOv3 model from """YOLOv3 model from
`"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_ `"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_
...@@ -194,25 +195,13 @@ class YOLOv3(Model): ...@@ -194,25 +195,13 @@ class YOLOv3(Model):
act='leaky_relu')) act='leaky_relu'))
self.route_blocks.append(route) self.route_blocks.append(route)
def extract_feats(self, inputs):
out = self.backbone.conv0(inputs)
out = self.backbone.downsample0(out)
blocks = []
for i, conv_block_i in enumerate(
self.backbone.darknet53_conv_block_list):
out = conv_block_i(out)
blocks.append(out)
if i < len(self.backbone.stages) - 1:
out = self.backbone.downsample_list[i](out)
return blocks[-1:-4:-1]
def forward(self, img_id, img_shape, inputs): def forward(self, img_id, img_shape, inputs):
outputs = [] outputs = []
boxes = [] boxes = []
scores = [] scores = []
downsample = 32 downsample = 32
feats = self.extract_feats(inputs) feats = self.backbone(inputs)
route = None route = None
for idx, feat in enumerate(feats): for idx, feat in enumerate(feats):
if idx > 0: if idx > 0:
...@@ -267,7 +256,7 @@ class YOLOv3(Model): ...@@ -267,7 +256,7 @@ class YOLOv3(Model):
return outputs + preds return outputs + preds
class YoloLoss(Loss): class YoloLoss(fluid.dygraph.Layer):
def __init__(self, num_classes=80, num_max_boxes=50): def __init__(self, num_classes=80, num_max_boxes=50):
super(YoloLoss, self).__init__() super(YoloLoss, self).__init__()
self.num_classes = num_classes self.num_classes = num_classes
...@@ -279,11 +268,16 @@ class YoloLoss(Loss): ...@@ -279,11 +268,16 @@ class YoloLoss(Loss):
] ]
self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
def forward(self, outputs, labels): def forward(self, *inputs):
downsample = 32 downsample = 32
gt_box, gt_label, gt_score = labels
losses = [] losses = []
if len(inputs) == 6:
output1, output2, output3, gt_box, gt_label, gt_score = inputs
elif len(inputs) == 8:
output1, output2, output3, img_id, bbox, gt_box, gt_label, gt_score = inputs
outputs = [output1, output2, output3]
for idx, out in enumerate(outputs): for idx, out in enumerate(outputs):
if idx == 3: break # debug if idx == 3: break # debug
anchor_mask = self.anchor_masks[idx] anchor_mask = self.anchor_masks[idx]
...@@ -306,9 +300,23 @@ class YoloLoss(Loss): ...@@ -306,9 +300,23 @@ class YoloLoss(Loss):
def _yolov3_darknet(num_layers=53, def _yolov3_darknet(num_layers=53,
num_classes=80, num_classes=80,
num_max_boxes=50,
model_mode='train', model_mode='train',
pretrained=True): pretrained=True):
model = YOLOv3(num_classes, model_mode) inputs = [
InputSpec(
[None, 1], 'int64', name='img_id'), InputSpec(
[None, 2], 'int32', name='img_shape'), InputSpec(
[None, 3, None, None], 'float32', name='image')
]
labels = [
InputSpec(
[None, num_max_boxes, 4], 'float32', name='gt_bbox'), InputSpec(
[None, num_max_boxes], 'int32', name='gt_label'), InputSpec(
[None, num_max_boxes], 'float32', name='gt_score')
]
net = YOLOv3(num_classes, model_mode)
model = paddle.Model(net, inputs, labels)
if pretrained: if pretrained:
assert num_layers in pretrain_infos.keys(), \ assert num_layers in pretrain_infos.keys(), \
"YOLOv3-DarkNet{} do not have pretrained weights now, " \ "YOLOv3-DarkNet{} do not have pretrained weights now, " \
...@@ -320,11 +328,15 @@ def _yolov3_darknet(num_layers=53, ...@@ -320,11 +328,15 @@ def _yolov3_darknet(num_layers=53,
return model return model
def yolov3_darknet53(num_classes=80, model_mode='train', pretrained=True): def yolov3_darknet53(num_classes=80,
num_max_boxes=50,
model_mode='train',
pretrained=True):
"""YOLOv3 model with 53-layer DarkNet as backbone """YOLOv3 model with 53-layer DarkNet as backbone
Args: Args:
num_classes (int): class number, default 80. num_classes (int): class number, default 80.
num_classes (int): max bbox number in a image, default 50.
model_mode (str): 'train', 'eval', 'test' mode, network structure model_mode (str): 'train', 'eval', 'test' mode, network structure
will be diffrent in the output layer and data, in 'train' mode, will be diffrent in the output layer and data, in 'train' mode,
no output layer append, in 'eval' and 'test', output feature no output layer append, in 'eval' and 'test', output feature
...@@ -334,4 +346,5 @@ def yolov3_darknet53(num_classes=80, model_mode='train', pretrained=True): ...@@ -334,4 +346,5 @@ def yolov3_darknet53(num_classes=80, model_mode='train', pretrained=True):
pretrained (bool): If True, returns a model with pre-trained model pretrained (bool): If True, returns a model with pre-trained model
on COCO, default True on COCO, default True
""" """
return _yolov3_darknet(53, num_classes, model_mode, pretrained) return _yolov3_darknet(53, num_classes, num_max_boxes, model_mode,
pretrained)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册