Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
b735e353
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b735e353
编写于
9月 13, 2020
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update yolov3 use new API. test=develop
上级
931564e5
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
55 addition
and
66 deletion
+55
-66
yolov3/darknet.py
yolov3/darknet.py
+6
-5
yolov3/infer.py
yolov3/infer.py
+6
-12
yolov3/main.py
yolov3/main.py
+7
-26
yolov3/modeling.py
yolov3/modeling.py
+36
-23
未找到文件。
yolov3/darknet.py
浏览文件 @
b735e353
...
@@ -12,14 +12,14 @@
...
@@ -12,14 +12,14 @@
#See the License for the specific language governing permissions and
#See the License for the specific language governing permissions and
#limitations under the License.
#limitations under the License.
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.static
import
InputSpec
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
from
paddle.utils.download
import
get_weights_path_from_url
from
paddle.incubate.hapi.model
import
Model
from
paddle.incubate.hapi.download
import
get_weights_path_from_url
__all__
=
[
'DarkNet'
,
'darknet53'
]
__all__
=
[
'DarkNet'
,
'darknet53'
]
...
@@ -131,7 +131,7 @@ class LayerWarp(fluid.dygraph.Layer):
...
@@ -131,7 +131,7 @@ class LayerWarp(fluid.dygraph.Layer):
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
])}
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
])}
class
DarkNet
(
Model
):
class
DarkNet
(
fluid
.
dygraph
.
Layer
):
"""DarkNet model from
"""DarkNet model from
`"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_
`"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_
...
@@ -190,7 +190,8 @@ def _darknet(num_layers=53, input_channels=3, pretrained=True):
...
@@ -190,7 +190,8 @@ def _darknet(num_layers=53, input_channels=3, pretrained=True):
weight_path
=
get_weights_path_from_url
(
*
(
pretrain_infos
[
num_layers
]))
weight_path
=
get_weights_path_from_url
(
*
(
pretrain_infos
[
num_layers
]))
assert
weight_path
.
endswith
(
'.pdparams'
),
\
assert
weight_path
.
endswith
(
'.pdparams'
),
\
"suffix of weight must be .pdparams"
"suffix of weight must be .pdparams"
model
.
load
(
weight_path
[:
-
9
])
weight_dict
,
_
=
fluid
.
load_dygraph
(
weight_path
[:
-
9
])
model
.
set_dict
(
weight_dict
)
return
model
return
model
...
...
yolov3/infer.py
浏览文件 @
b735e353
...
@@ -20,12 +20,11 @@ import argparse
...
@@ -20,12 +20,11 @@ import argparse
import
numpy
as
np
import
numpy
as
np
from
PIL
import
Image
from
PIL
import
Image
import
paddle
from
paddle
import
fluid
from
paddle
import
fluid
from
paddle.fluid.optimizer
import
Momentum
from
paddle.fluid.optimizer
import
Momentum
from
paddle.io
import
DataLoader
from
paddle.io
import
DataLoader
from
paddle.incubate.hapi.model
import
Model
,
Input
,
set_device
from
modeling
import
yolov3_darknet53
,
YoloLoss
from
modeling
import
yolov3_darknet53
,
YoloLoss
from
transforms
import
*
from
transforms
import
*
from
utils
import
print_arguments
from
utils
import
print_arguments
...
@@ -36,6 +35,7 @@ logger = logging.getLogger(__name__)
...
@@ -36,6 +35,7 @@ logger = logging.getLogger(__name__)
IMAGE_MEAN
=
[
0.485
,
0.456
,
0.406
]
IMAGE_MEAN
=
[
0.485
,
0.456
,
0.406
]
IMAGE_STD
=
[
0.229
,
0.224
,
0.225
]
IMAGE_STD
=
[
0.229
,
0.224
,
0.225
]
NUM_MAX_BOXES
=
50
def
get_save_image_name
(
output_dir
,
image_path
):
def
get_save_image_name
(
output_dir
,
image_path
):
...
@@ -62,24 +62,18 @@ def load_labels(label_list, with_background=True):
...
@@ -62,24 +62,18 @@ def load_labels(label_list, with_background=True):
def
main
():
def
main
():
device
=
set_device
(
FLAGS
.
device
)
device
=
paddle
.
set_device
(
FLAGS
.
device
)
fluid
.
enable_dygraph
(
device
)
if
FLAGS
.
dynamic
else
None
paddle
.
disable_static
(
device
)
if
FLAGS
.
dynamic
else
None
inputs
=
[
Input
(
[
None
,
1
],
'int64'
,
name
=
'img_id'
),
Input
(
[
None
,
2
],
'int32'
,
name
=
'img_shape'
),
Input
(
[
None
,
3
,
None
,
None
],
'float32'
,
name
=
'image'
)
]
cat2name
=
load_labels
(
FLAGS
.
label_list
,
with_background
=
False
)
cat2name
=
load_labels
(
FLAGS
.
label_list
,
with_background
=
False
)
model
=
yolov3_darknet53
(
model
=
yolov3_darknet53
(
num_classes
=
len
(
cat2name
),
num_classes
=
len
(
cat2name
),
num_max_boxes
=
NUM_MAX_BOXES
,
model_mode
=
'test'
,
model_mode
=
'test'
,
pretrained
=
FLAGS
.
weights
is
None
)
pretrained
=
FLAGS
.
weights
is
None
)
model
.
prepare
(
inputs
=
inputs
,
device
=
FLAGS
.
device
)
model
.
prepare
()
if
FLAGS
.
weights
is
not
None
:
if
FLAGS
.
weights
is
not
None
:
model
.
load
(
FLAGS
.
weights
,
reset_optimizer
=
True
)
model
.
load
(
FLAGS
.
weights
,
reset_optimizer
=
True
)
...
...
yolov3/main.py
浏览文件 @
b735e353
...
@@ -21,13 +21,11 @@ import os
...
@@ -21,13 +21,11 @@ import os
import
numpy
as
np
import
numpy
as
np
import
paddle
from
paddle
import
fluid
from
paddle
import
fluid
from
paddle.fluid.optimizer
import
Momentum
from
paddle.fluid.optimizer
import
Momentum
from
paddle.io
import
DataLoader
from
paddle.io
import
DataLoader
,
DistributedBatchSampler
from
paddle.vision.transforms
import
Compose
,
BatchCompose
from
paddle.incubate.hapi.model
import
Model
,
Input
,
set_device
from
paddle.incubate.hapi.distributed
import
DistributedBatchSampler
from
paddle.incubate.hapi.vision.transforms
import
Compose
,
BatchCompose
from
modeling
import
yolov3_darknet53
,
YoloLoss
from
modeling
import
yolov3_darknet53
,
YoloLoss
from
coco
import
COCODataset
from
coco
import
COCODataset
...
@@ -61,22 +59,8 @@ def make_optimizer(step_per_epoch, parameter_list=None):
...
@@ -61,22 +59,8 @@ def make_optimizer(step_per_epoch, parameter_list=None):
def
main
():
def
main
():
device
=
set_device
(
FLAGS
.
device
)
device
=
paddle
.
set_device
(
FLAGS
.
device
)
fluid
.
enable_dygraph
(
device
)
if
FLAGS
.
dynamic
else
None
paddle
.
disable_static
(
device
)
if
FLAGS
.
dynamic
else
None
inputs
=
[
Input
(
[
None
,
1
],
'int64'
,
name
=
'img_id'
),
Input
(
[
None
,
2
],
'int32'
,
name
=
'img_shape'
),
Input
(
[
None
,
3
,
None
,
None
],
'float32'
,
name
=
'image'
)
]
labels
=
[
Input
(
[
None
,
NUM_MAX_BOXES
,
4
],
'float32'
,
name
=
'gt_bbox'
),
Input
(
[
None
,
NUM_MAX_BOXES
],
'int32'
,
name
=
'gt_label'
),
Input
(
[
None
,
NUM_MAX_BOXES
],
'float32'
,
name
=
'gt_score'
)
]
if
not
FLAGS
.
eval_only
:
# training mode
if
not
FLAGS
.
eval_only
:
# training mode
train_transform
=
Compose
([
train_transform
=
Compose
([
...
@@ -129,6 +113,7 @@ def main():
...
@@ -129,6 +113,7 @@ def main():
pretrained
=
FLAGS
.
eval_only
and
FLAGS
.
weights
is
None
pretrained
=
FLAGS
.
eval_only
and
FLAGS
.
weights
is
None
model
=
yolov3_darknet53
(
model
=
yolov3_darknet53
(
num_classes
=
dataset
.
num_classes
,
num_classes
=
dataset
.
num_classes
,
num_max_boxes
=
NUM_MAX_BOXES
,
model_mode
=
'eval'
if
FLAGS
.
eval_only
else
'train'
,
model_mode
=
'eval'
if
FLAGS
.
eval_only
else
'train'
,
pretrained
=
pretrained
)
pretrained
=
pretrained
)
...
@@ -140,11 +125,7 @@ def main():
...
@@ -140,11 +125,7 @@ def main():
len
(
batch_sampler
),
parameter_list
=
model
.
parameters
())
len
(
batch_sampler
),
parameter_list
=
model
.
parameters
())
model
.
prepare
(
model
.
prepare
(
optim
,
optimizer
=
optim
,
loss
=
YoloLoss
(
num_classes
=
dataset
.
num_classes
))
YoloLoss
(
num_classes
=
dataset
.
num_classes
),
inputs
=
inputs
,
labels
=
labels
,
device
=
FLAGS
.
device
)
# NOTE: we implement COCO metric of YOLOv3 model here, separately
# NOTE: we implement COCO metric of YOLOv3 model here, separately
# from 'prepare' and 'fit' framework for follwing reason:
# from 'prepare' and 'fit' framework for follwing reason:
...
...
yolov3/modeling.py
浏览文件 @
b735e353
...
@@ -15,14 +15,15 @@
...
@@ -15,14 +15,15 @@
from
__future__
import
division
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.
incubate.hapi.model
import
Model
from
paddle.
static
import
InputSpec
from
paddle.
incubate.hapi.loss
import
Loss
from
paddle.
utils.download
import
get_weights_path_from_url
from
paddle.incubate.hapi.download
import
get_weights_path_from_url
from
darknet
import
darknet53
from
darknet
import
darknet53
__all__
=
[
'YoloLoss'
,
'YOLOv3'
,
'yolov3_darknet53'
]
__all__
=
[
'YoloLoss'
,
'YOLOv3'
,
'yolov3_darknet53'
]
...
@@ -125,7 +126,7 @@ class YoloDetectionBlock(fluid.dygraph.Layer):
...
@@ -125,7 +126,7 @@ class YoloDetectionBlock(fluid.dygraph.Layer):
return
route
,
tip
return
route
,
tip
class
YOLOv3
(
Model
):
class
YOLOv3
(
fluid
.
dygraph
.
Layer
):
"""YOLOv3 model from
"""YOLOv3 model from
`"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_
`"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_
...
@@ -194,25 +195,13 @@ class YOLOv3(Model):
...
@@ -194,25 +195,13 @@ class YOLOv3(Model):
act
=
'leaky_relu'
))
act
=
'leaky_relu'
))
self
.
route_blocks
.
append
(
route
)
self
.
route_blocks
.
append
(
route
)
def
extract_feats
(
self
,
inputs
):
out
=
self
.
backbone
.
conv0
(
inputs
)
out
=
self
.
backbone
.
downsample0
(
out
)
blocks
=
[]
for
i
,
conv_block_i
in
enumerate
(
self
.
backbone
.
darknet53_conv_block_list
):
out
=
conv_block_i
(
out
)
blocks
.
append
(
out
)
if
i
<
len
(
self
.
backbone
.
stages
)
-
1
:
out
=
self
.
backbone
.
downsample_list
[
i
](
out
)
return
blocks
[
-
1
:
-
4
:
-
1
]
def
forward
(
self
,
img_id
,
img_shape
,
inputs
):
def
forward
(
self
,
img_id
,
img_shape
,
inputs
):
outputs
=
[]
outputs
=
[]
boxes
=
[]
boxes
=
[]
scores
=
[]
scores
=
[]
downsample
=
32
downsample
=
32
feats
=
self
.
extract_feats
(
inputs
)
feats
=
self
.
backbone
(
inputs
)
route
=
None
route
=
None
for
idx
,
feat
in
enumerate
(
feats
):
for
idx
,
feat
in
enumerate
(
feats
):
if
idx
>
0
:
if
idx
>
0
:
...
@@ -267,7 +256,7 @@ class YOLOv3(Model):
...
@@ -267,7 +256,7 @@ class YOLOv3(Model):
return
outputs
+
preds
return
outputs
+
preds
class
YoloLoss
(
Loss
):
class
YoloLoss
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_classes
=
80
,
num_max_boxes
=
50
):
def
__init__
(
self
,
num_classes
=
80
,
num_max_boxes
=
50
):
super
(
YoloLoss
,
self
).
__init__
()
super
(
YoloLoss
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
num_classes
=
num_classes
...
@@ -279,11 +268,16 @@ class YoloLoss(Loss):
...
@@ -279,11 +268,16 @@ class YoloLoss(Loss):
]
]
self
.
anchor_masks
=
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
self
.
anchor_masks
=
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
def
forward
(
self
,
outputs
,
label
s
):
def
forward
(
self
,
*
input
s
):
downsample
=
32
downsample
=
32
gt_box
,
gt_label
,
gt_score
=
labels
losses
=
[]
losses
=
[]
if
len
(
inputs
)
==
6
:
output1
,
output2
,
output3
,
gt_box
,
gt_label
,
gt_score
=
inputs
elif
len
(
inputs
)
==
8
:
output1
,
output2
,
output3
,
img_id
,
bbox
,
gt_box
,
gt_label
,
gt_score
=
inputs
outputs
=
[
output1
,
output2
,
output3
]
for
idx
,
out
in
enumerate
(
outputs
):
for
idx
,
out
in
enumerate
(
outputs
):
if
idx
==
3
:
break
# debug
if
idx
==
3
:
break
# debug
anchor_mask
=
self
.
anchor_masks
[
idx
]
anchor_mask
=
self
.
anchor_masks
[
idx
]
...
@@ -306,9 +300,23 @@ class YoloLoss(Loss):
...
@@ -306,9 +300,23 @@ class YoloLoss(Loss):
def
_yolov3_darknet
(
num_layers
=
53
,
def
_yolov3_darknet
(
num_layers
=
53
,
num_classes
=
80
,
num_classes
=
80
,
num_max_boxes
=
50
,
model_mode
=
'train'
,
model_mode
=
'train'
,
pretrained
=
True
):
pretrained
=
True
):
model
=
YOLOv3
(
num_classes
,
model_mode
)
inputs
=
[
InputSpec
(
[
None
,
1
],
'int64'
,
name
=
'img_id'
),
InputSpec
(
[
None
,
2
],
'int32'
,
name
=
'img_shape'
),
InputSpec
(
[
None
,
3
,
None
,
None
],
'float32'
,
name
=
'image'
)
]
labels
=
[
InputSpec
(
[
None
,
num_max_boxes
,
4
],
'float32'
,
name
=
'gt_bbox'
),
InputSpec
(
[
None
,
num_max_boxes
],
'int32'
,
name
=
'gt_label'
),
InputSpec
(
[
None
,
num_max_boxes
],
'float32'
,
name
=
'gt_score'
)
]
net
=
YOLOv3
(
num_classes
,
model_mode
)
model
=
paddle
.
Model
(
net
,
inputs
,
labels
)
if
pretrained
:
if
pretrained
:
assert
num_layers
in
pretrain_infos
.
keys
(),
\
assert
num_layers
in
pretrain_infos
.
keys
(),
\
"YOLOv3-DarkNet{} do not have pretrained weights now, "
\
"YOLOv3-DarkNet{} do not have pretrained weights now, "
\
...
@@ -320,11 +328,15 @@ def _yolov3_darknet(num_layers=53,
...
@@ -320,11 +328,15 @@ def _yolov3_darknet(num_layers=53,
return
model
return
model
def
yolov3_darknet53
(
num_classes
=
80
,
model_mode
=
'train'
,
pretrained
=
True
):
def
yolov3_darknet53
(
num_classes
=
80
,
num_max_boxes
=
50
,
model_mode
=
'train'
,
pretrained
=
True
):
"""YOLOv3 model with 53-layer DarkNet as backbone
"""YOLOv3 model with 53-layer DarkNet as backbone
Args:
Args:
num_classes (int): class number, default 80.
num_classes (int): class number, default 80.
num_classes (int): max bbox number in a image, default 50.
model_mode (str): 'train', 'eval', 'test' mode, network structure
model_mode (str): 'train', 'eval', 'test' mode, network structure
will be diffrent in the output layer and data, in 'train' mode,
will be diffrent in the output layer and data, in 'train' mode,
no output layer append, in 'eval' and 'test', output feature
no output layer append, in 'eval' and 'test', output feature
...
@@ -334,4 +346,5 @@ def yolov3_darknet53(num_classes=80, model_mode='train', pretrained=True):
...
@@ -334,4 +346,5 @@ def yolov3_darknet53(num_classes=80, model_mode='train', pretrained=True):
pretrained (bool): If True, returns a model with pre-trained model
pretrained (bool): If True, returns a model with pre-trained model
on COCO, default True
on COCO, default True
"""
"""
return
_yolov3_darknet
(
53
,
num_classes
,
model_mode
,
pretrained
)
return
_yolov3_darknet
(
53
,
num_classes
,
num_max_boxes
,
model_mode
,
pretrained
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录