提交 b3ec7f39 编写于 作者: L LielinJiang

clean test code

上级 ee496dc6
......@@ -29,92 +29,22 @@ from paddle.io import BatchSampler, DataLoader
from hapi.model import Model, Input, set_device
from hapi.loss import Loss, CrossEntropy
from hapi.vision.models import LeNet
from hapi.metrics import Accuracy
from hapi.callbacks import ProgBarLogger
from hapi.datasets import MNIST as MnistDataset
class SimpleImgConvPool(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
pool_size,
pool_stride,
pool_padding=0,
pool_type='max',
global_pooling=False,
conv_stride=1,
conv_padding=0,
conv_dilation=1,
conv_groups=None,
act=None,
use_cudnn=False,
param_attr=None,
bias_attr=None):
super(SimpleImgConvPool, self).__init__('SimpleConv')
self._conv2d = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=conv_stride,
padding=conv_padding,
dilation=conv_dilation,
groups=conv_groups,
param_attr=None,
bias_attr=None,
use_cudnn=use_cudnn)
self._pool2d = Pool2D(
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
pool_padding=pool_padding,
global_pooling=global_pooling,
use_cudnn=use_cudnn)
def forward(self, inputs):
x = self._conv2d(inputs)
x = self._pool2d(x)
return x
class MNIST(Model):
def __init__(self):
super(MNIST, self).__init__()
self._simple_img_conv_pool_1 = SimpleImgConvPool(
1, 20, 5, 2, 2, act="relu")
self._simple_img_conv_pool_2 = SimpleImgConvPool(
20, 50, 5, 2, 2, act="relu")
pool_2_shape = 50 * 4 * 4
SIZE = 10
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
self._fc = Linear(
800,
10,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)),
act="softmax")
def forward(self, inputs):
inputs = fluid.layers.reshape(inputs, [-1, 1, 28, 28])
x = self._simple_img_conv_pool_1(inputs)
x = self._simple_img_conv_pool_2(x)
x = fluid.layers.flatten(x, axis=1)
x = self._fc(x)
return x
class TestMnistDataset(MnistDataset):
def __init__(self):
super(TestMnistDataset, self).__init__(mode='test')
from hapi.datasets import MNIST
class MnistDataset(MNIST):
def __init__(self, mode, return_label=True):
super(MnistDataset, self).__init__(mode=mode)
self.return_label = return_label
def __getitem__(self, idx):
return self.images[idx],
img = np.reshape(self.images[idx], [1, 28, 28])
if self.return_label:
return img, np.array(self.labels[idx]).astype('int64')
return img,
def __len__(self):
return len(self.images)
......@@ -142,9 +72,9 @@ class TestModel(unittest.TestCase):
train_dataset = MnistDataset(mode='train')
val_dataset = MnistDataset(mode='test')
test_dataset = TestMnistDataset()
test_dataset = MnistDataset(mode='test', return_label=False)
model = MNIST()
model = LeNet()
optim = fluid.optimizer.Momentum(
learning_rate=0.01, momentum=.9, parameter_list=model.parameters())
loss = CrossEntropy()
......
......@@ -95,7 +95,6 @@ def start_local_trainers(cluster,
print("trainer proc env:{}".format(current_env))
cmd = "python -m coverage run --branch -p " + training_script
# cmd = [sys.executable, "-u", training_script] + training_script_args
print("start trainer proc:{} env:{}".format(cmd, proc_env))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册