Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
b1862cf7
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b1862cf7
编写于
3月 24, 2020
作者:
Q
qingqing01
提交者:
GitHub
3月 24, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14 from qingqing01/save_checkpoint
Do not save checkpoint if not set save_dir
上级
839db7b1
9d7760c9
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
136 addition
and
87 deletion
+136
-87
callbacks.py
callbacks.py
+15
-9
mnist.py
mnist.py
+11
-9
model.py
model.py
+103
-64
tests/test_model.py
tests/test_model.py
+7
-5
未找到文件。
callbacks.py
浏览文件 @
b1862cf7
...
...
@@ -18,6 +18,7 @@ import copy
from
progressbar
import
ProgressBar
from
distributed
import
get_local_rank
def
config_callbacks
(
callbacks
=
None
,
model
=
None
,
batch_size
=
None
,
...
...
@@ -26,6 +27,7 @@ def config_callbacks(callbacks=None,
log_freq
=
2
,
verbose
=
2
,
save_freq
=
1
,
save_dir
=
None
,
metrics
=
None
,
mode
=
'train'
):
cbks
=
callbacks
or
[]
...
...
@@ -34,7 +36,7 @@ def config_callbacks(callbacks=None,
cbks
=
cbks
+
[
ProgBarLogger
(
log_freq
,
verbose
=
verbose
)]
if
not
any
(
isinstance
(
k
,
ModelCheckpoint
)
for
k
in
cbks
):
cbks
=
cbks
+
[
ModelCheckpoint
(
save_freq
)]
cbks
=
cbks
+
[
ModelCheckpoint
(
save_freq
,
save_dir
)]
cbk_list
=
CallbackList
(
cbks
)
cbk_list
.
set_model
(
model
)
...
...
@@ -209,9 +211,10 @@ class ProgBarLogger(Callback):
def
on_train_batch_end
(
self
,
step
,
logs
=
None
):
logs
=
logs
or
{}
self
.
train_step
=
step
self
.
train_step
+=
1
if
self
.
train_step
%
self
.
log_freq
==
0
and
self
.
verbose
and
get_local_rank
()
==
0
:
if
self
.
train_step
%
self
.
log_freq
==
0
and
self
.
verbose
and
get_local_rank
(
)
==
0
:
# if steps is not None, last step will update in on_epoch_end
if
self
.
steps
and
self
.
train_step
<
self
.
steps
:
self
.
_updates
(
logs
,
'train'
)
...
...
@@ -247,21 +250,24 @@ class ProgBarLogger(Callback):
class
ModelCheckpoint
(
Callback
):
def
__init__
(
self
,
save_freq
=
1
,
save_
file
=
'output'
):
def
__init__
(
self
,
save_freq
=
1
,
save_
dir
=
None
):
self
.
save_freq
=
save_freq
self
.
save_
file
=
save_file
self
.
save_
dir
=
save_dir
def
on_epoch_begin
(
self
,
epoch
=
None
,
logs
=
None
):
self
.
epoch
=
epoch
def
_is_save
(
self
):
return
self
.
model
and
self
.
save_dir
and
get_local_rank
()
==
0
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
if
self
.
model
and
self
.
epoch
%
self
.
save_freq
==
0
and
get_local_rank
()
==
0
:
path
=
'{}/{}'
.
format
(
self
.
save_
file
,
epoch
)
if
self
.
_is_save
()
and
self
.
epoch
%
self
.
save_freq
==
0
:
path
=
'{}/{}'
.
format
(
self
.
save_
dir
,
epoch
)
print
(
'save checkpoint at {}'
.
format
(
path
))
self
.
model
.
save
(
path
)
def
on_train_end
(
self
,
logs
=
None
):
if
self
.
model
and
get_local_rank
()
==
0
:
path
=
'{}/final'
.
format
(
self
.
save_
file
)
if
self
.
_is_save
()
:
path
=
'{}/final'
.
format
(
self
.
save_
dir
)
print
(
'save checkpoint at {}'
.
format
(
path
))
self
.
model
.
save
(
path
)
mnist.py
浏览文件 @
b1862cf7
...
...
@@ -107,24 +107,26 @@ class MNIST(Model):
def
main
():
init_context
(
'dynamic'
if
FLAGS
.
dynamic
else
'static'
)
train_dataset
=
MnistDataset
(
mode
=
'train'
)
val_dataset
=
MnistDataset
(
mode
=
'test'
)
inputs
=
[
Input
([
None
,
784
],
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
model
=
MNIST
()
optim
=
Momentum
(
learning_rate
=
FLAGS
.
lr
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
learning_rate
=
FLAGS
.
lr
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
model
.
prepare
(
optim
,
CrossEntropy
(),
Accuracy
(
topk
=
(
1
,
2
)),
inputs
,
labels
)
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
model
.
fit
(
train_dataset
,
val_dataset
,
epochs
=
FLAGS
.
epoch
,
batch_size
=
FLAGS
.
batch_size
)
model
.
fit
(
train_dataset
,
val_dataset
,
epochs
=
FLAGS
.
epoch
,
batch_size
=
FLAGS
.
batch_size
,
save_dir
=
'mnist_checkpoint'
)
if
__name__
==
'__main__'
:
...
...
model.py
浏览文件 @
b1862cf7
...
...
@@ -38,7 +38,6 @@ from paddle.fluid.io import DataLoader
from
metrics
import
Metric
from
callbacks
import
config_callbacks
__all__
=
[
'Model'
,
'Loss'
,
'CrossEntropy'
,
'Input'
]
...
...
@@ -87,7 +86,7 @@ def extract_args(func):
def
init_context
(
backend
):
assert
isinstance
(
backend
,
str
)
and
backend
.
lower
()
in
[
'dynamic'
,
'static'
],
\
"Expected backend in ['dynamic', 'static'], but got {}"
.
format
(
backend
)
"Expected backend in ['dynamic', 'static'], but got {}"
.
format
(
backend
)
place
=
fluid
.
CUDAPlace
(
distributed
.
Env
().
dev_id
)
if
\
distributed
.
Env
().
nranks
>
1
else
fluid
.
CUDAPlace
(
0
)
...
...
@@ -155,9 +154,13 @@ class StaticGraphAdapter(object):
self
.
_progs
=
{}
self
.
_compiled_progs
=
{}
self
.
_merge_count
=
{
'eval_total'
:
0
,
'test_total'
:
0
,
'eval_batch'
:
0
,
'test_batch'
:
0
}
self
.
_merge_count
=
{
'eval_total'
:
0
,
'test_total'
:
0
,
'eval_batch'
:
0
,
'test_batch'
:
0
}
self
.
_nranks
=
distributed
.
Env
().
nranks
self
.
_local_rank
=
distributed
.
Env
().
local_rank
...
...
@@ -370,9 +373,12 @@ class StaticGraphAdapter(object):
samples
=
state
[
0
].
shape
[
0
]
current_count
=
self
.
_merge_count
.
get
(
self
.
mode
+
'_total'
,
0
)
if
current_count
+
samples
>=
total_size
:
state
=
[
s
[:
total_size
-
current_count
,
...]
for
s
in
state
]
state
=
[
s
[:
total_size
-
current_count
,
...]
for
s
in
state
]
self
.
_merge_count
[
self
.
mode
+
'_total'
]
=
0
self
.
_merge_count
[
self
.
mode
+
'_batch'
]
=
total_size
-
current_count
self
.
_merge_count
[
self
.
mode
+
'_batch'
]
=
total_size
-
current_count
else
:
self
.
_merge_count
[
self
.
mode
+
'_total'
]
+=
samples
self
.
_merge_count
[
self
.
mode
+
'_batch'
]
=
samples
...
...
@@ -405,7 +411,7 @@ class StaticGraphAdapter(object):
# HACK workaround learning rate map issue
lr_var
=
self
.
model
.
_optimizer
.
_learning_rate_map
[
self
.
_orig_prog
]
self
.
model
.
_optimizer
.
_learning_rate_map
[
prog
]
=
lr_var
losses
=
[]
metrics
=
[]
with
fluid
.
program_guard
(
prog
,
self
.
_startup_prog
):
...
...
@@ -421,16 +427,22 @@ class StaticGraphAdapter(object):
outputs
=
to_list
(
self
.
model
.
forward
(
*
inputs
))
if
mode
!=
'test'
and
self
.
model
.
_loss_function
:
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
if
self
.
_nranks
>
1
and
mode
!=
'train'
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
outputs
]
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
outputs
]
if
mode
!=
'test'
:
labels
=
[
distributed
.
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
labels
=
[
distributed
.
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
if
mode
!=
'test'
:
for
metric
in
self
.
model
.
_metrics
:
metrics
.
append
(
to_list
(
metric
.
add_metric_op
(
outputs
,
labels
)))
metrics
.
append
(
to_list
(
metric
.
add_metric_op
(
outputs
,
labels
)))
if
mode
==
'train'
and
self
.
model
.
_optimizer
:
self
.
_loss_endpoint
=
fluid
.
layers
.
sum
(
losses
)
...
...
@@ -440,16 +452,16 @@ class StaticGraphAdapter(object):
dist_strategy
=
DistributedStrategy
()
dist_strategy
.
mode
=
"collective"
dist_strategy
.
collective_mode
=
"grad_allreduce"
self
.
model
.
_optimizer
=
fleet
.
distributed_optimizer
(
self
.
model
.
_optimizer
,
strategy
=
dist_strategy
)
self
.
model
.
_optimizer
=
fleet
.
distributed_optimizer
(
self
.
model
.
_optimizer
,
strategy
=
dist_strategy
)
self
.
model
.
_optimizer
.
minimize
(
self
.
_loss_endpoint
)
if
mode
!=
'train'
:
# clone again to put it in test mode
prog
=
prog
.
clone
(
for_test
=
True
)
self
.
_input_vars
[
mode
]
=
inputs
self
.
_progs
[
mode
]
=
prog
self
.
_endpoints
[
mode
]
=
{
"output"
:
outputs
,
...
...
@@ -457,7 +469,6 @@ class StaticGraphAdapter(object):
"metric"
:
metrics
}
def
_compile_and_initialize
(
self
,
prog
,
mode
):
compiled_prog
=
self
.
_compiled_progs
.
get
(
mode
,
None
)
if
compiled_prog
is
not
None
:
...
...
@@ -477,7 +488,8 @@ class StaticGraphAdapter(object):
if
self
.
_executor
is
None
:
if
self
.
_nranks
>
1
and
device
.
lower
()
==
'gpu'
:
gpu_id
=
int
(
distributed
.
Env
().
dev_id
)
place
=
fluid
.
CUDAPlace
(
gpu_id
)
if
device
.
lower
()
==
'gpu'
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
gpu_id
)
if
device
.
lower
(
)
==
'gpu'
else
fluid
.
CPUPlace
()
else
:
place
=
places
[
0
]
self
.
_executor
=
fluid
.
Executor
(
place
)
...
...
@@ -497,7 +509,7 @@ class StaticGraphAdapter(object):
if
self
.
_nranks
<
2
:
compiled_prog
=
fluid
.
CompiledProgram
(
prog
)
else
:
compiled_prog
=
prog
#fleet.main_program
compiled_prog
=
prog
#fleet.main_program
if
len
(
places
)
>
1
:
loss_name
=
None
...
...
@@ -514,8 +526,12 @@ class DynamicGraphAdapter(object):
self
.
model
=
model
self
.
_nranks
=
distributed
.
Env
().
nranks
self
.
_local_rank
=
distributed
.
Env
().
local_rank
self
.
_merge_count
=
{
'eval_total'
:
0
,
'test_total'
:
0
,
'eval_batch'
:
0
,
'test_batch'
:
0
}
self
.
_merge_count
=
{
'eval_total'
:
0
,
'test_total'
:
0
,
'eval_batch'
:
0
,
'test_batch'
:
0
}
if
self
.
_nranks
>
1
:
self
.
ddp_model
=
distributed
.
DistributedDataParallel
(
self
.
model
)
...
...
@@ -554,7 +570,8 @@ class DynamicGraphAdapter(object):
self
.
model
.
clear_gradients
()
metrics
=
[]
for
metric
in
self
.
model
.
_metrics
:
metric_outs
=
metric
.
add_metric_op
(
to_list
(
outputs
),
to_list
(
labels
))
metric_outs
=
metric
.
add_metric_op
(
to_list
(
outputs
),
to_list
(
labels
))
m
=
metric
.
update
(
*
[
to_numpy
(
m
)
for
m
in
to_list
(
metric_outs
)])
metrics
.
append
(
m
)
...
...
@@ -573,7 +590,10 @@ class DynamicGraphAdapter(object):
else
:
losses
=
[]
if
self
.
_nranks
>
1
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)
]
labels
=
[
distributed
.
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
metrics
=
[]
for
metric
in
self
.
model
.
_metrics
:
...
...
@@ -584,15 +604,17 @@ class DynamicGraphAdapter(object):
samples
=
outputs
[
0
].
shape
[
0
]
current_count
=
self
.
_merge_count
.
get
(
self
.
mode
+
'_total'
,
0
)
if
current_count
+
samples
>=
total_size
:
outputs
=
[
o
[:
total_size
-
metric
.
count
[
0
]]
for
o
in
outputs
]
outputs
=
[
o
[:
total_size
-
metric
.
count
[
0
]]
for
o
in
outputs
]
labels
=
[
l
[:
total_size
-
metric
.
count
[
0
]]
for
l
in
labels
]
self
.
_merge_count
[
self
.
mode
+
'_total'
]
=
0
self
.
_merge_count
[
self
.
mode
+
'_batch'
]
=
total_size
-
current_count
self
.
_merge_count
[
self
.
mode
+
'_batch'
]
=
total_size
-
current_count
else
:
self
.
_merge_count
[
self
.
mode
+
'_total'
]
+=
samples
self
.
_merge_count
[
self
.
mode
+
'_batch'
]
=
samples
metric_outs
=
metric
.
add_metric_op
(
to_list
(
outputs
),
labels
)
m
=
metric
.
update
(
*
[
to_numpy
(
m
)
for
m
in
to_list
(
metric_outs
)])
metrics
.
append
(
m
)
...
...
@@ -608,7 +630,10 @@ class DynamicGraphAdapter(object):
inputs
=
[
to_variable
(
x
)
for
x
in
to_list
(
inputs
)]
outputs
=
self
.
model
.
forward
(
*
inputs
)
if
self
.
_nranks
>
2
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)
]
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)]
def
parameters
(
self
,
*
args
,
**
kwargs
):
...
...
@@ -829,7 +854,7 @@ class Model(fluid.dygraph.Layer):
the variable to the environment variable and set its value to 1.
The default is None.
"""
self
.
_optimizer
=
optimizer
if
loss_function
:
if
not
isinstance
(
loss_function
,
Loss
):
...
...
@@ -852,7 +877,7 @@ class Model(fluid.dygraph.Layer):
self
.
_inputs
=
inputs
self
.
_labels
=
labels
self
.
_device
=
device
if
device
is
None
:
self
.
_device
=
'GPU'
if
fluid
.
is_compiled_with_cuda
()
else
'CPU'
self
.
_device_ids
=
device_ids
...
...
@@ -869,6 +894,7 @@ class Model(fluid.dygraph.Layer):
epochs
=
1
,
eval_freq
=
1
,
log_freq
=
10
,
save_dir
=
None
,
save_freq
=
1
,
verbose
=
2
,
drop_last
=
False
,
...
...
@@ -878,17 +904,22 @@ class Model(fluid.dygraph.Layer):
"""
FIXME: add more comments and usage
Args:
train_loader (DataLoader):
a
n iterable data loader is used for train.
eval_loader (DataLoader):
a
n iterable data loader is used for
train_loader (DataLoader):
A
n iterable data loader is used for train.
eval_loader (DataLoader):
A
n iterable data loader is used for
evaluation at the end of epoch. If None, will not do evaluation.
epochs (int): number of epochs to train the model.
eval_freq (int): evaluation frequency in epoch.
log_freq (int): frequency to print log during training.
save_freq (int): frequency to save checkpoint during training.
verbose (int): verbosity mode, should be 0, 1, or 2.
epochs (int): Integer number. The number of epochs to train the model.
eval_freq (int): The frequency, in number of epochs, an evalutation
is performed.
log_freq (int): The frequency, in number of steps, the training logs
is printed.
save_dir(str|None): The directory to save checkpoint during training.
If None, will not save checkpoint.
save_freq (int): The frequency, in number of epochs, to save checkpoint.
verbose (int): The verbosity mode, should be 0, 1, or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch.
callbacks (Callback|None): list of `Callback` instances to apply
during training.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted.
"""
assert
train_dataset
is
not
None
or
train_loader
is
not
None
,
\
...
...
@@ -904,42 +935,48 @@ class Model(fluid.dygraph.Layer):
feed_list
=
[
x
.
forward
()
for
x
in
self
.
_inputs
+
self
.
_labels
]
if
train_loader
is
None
:
train_sampler
=
DistributedBatchSampler
(
train_dataset
,
batch_size
=
batch_size
,
shuffle
=
shuffle
,
drop_last
=
drop_last
)
train_loader
=
DataLoader
(
train_dataset
,
batch_sampler
=
train_sampler
,
places
=
self
.
_place
,
feed_list
=
feed_list
,
num_workers
=
num_workers
,
return_list
=
True
)
train_sampler
=
DistributedBatchSampler
(
train_dataset
,
batch_size
=
batch_size
,
shuffle
=
shuffle
,
drop_last
=
drop_last
)
train_loader
=
DataLoader
(
train_dataset
,
batch_sampler
=
train_sampler
,
places
=
self
.
_place
,
feed_list
=
feed_list
,
num_workers
=
num_workers
,
return_list
=
True
)
if
eval_loader
is
None
and
eval_dataset
is
not
None
:
eval_sampler
=
DistributedBatchSampler
(
eval_dataset
,
batch_size
=
batch_size
)
eval_loader
=
DataLoader
(
eval_dataset
,
batch_sampler
=
eval_sampler
,
places
=
self
.
_place
,
feed_list
=
feed_list
,
num_workers
=
num_workers
,
return_list
=
True
)
eval_sampler
=
DistributedBatchSampler
(
eval_dataset
,
batch_size
=
batch_size
)
eval_loader
=
DataLoader
(
eval_dataset
,
batch_sampler
=
eval_sampler
,
places
=
self
.
_place
,
feed_list
=
feed_list
,
num_workers
=
num_workers
,
return_list
=
True
)
do_eval
=
eval_loader
is
not
None
self
.
_test_dataloader
=
eval_loader
metrics_name
=
self
.
_metrics_name
()
steps
=
len
(
train_loader
)
if
hasattr
(
train_loader
,
'__len__'
)
else
None
cbks
=
config_callbacks
(
callbacks
,
model
=
self
,
epochs
=
epochs
,
steps
=
None
,
steps
=
steps
,
log_freq
=
log_freq
,
save_freq
=
save_freq
,
save_dir
=
save_dir
,
verbose
=
verbose
,
metrics
=
self
.
_metrics_name
(),
)
def
_run_one_epoch
(
data_loader
,
callbacks
,
mode
):
size
=
data_loader
.
size
if
hasattr
(
data_loader
,
'size'
)
else
None
size
=
len
(
data_loader
)
if
hasattr
(
data_loader
,
'__len__'
)
else
None
logs
=
{
'steps'
:
size
,
'metrics_name'
:
metrics_name
,
...
...
@@ -965,16 +1002,18 @@ class Model(fluid.dygraph.Layer):
for
metric
in
self
.
_metrics
:
res
=
metric
.
accumulate
()
metrics
.
extend
(
to_list
(
res
))
assert
len
(
metrics_name
)
==
len
(
metrics
)
for
k
,
v
in
zip
(
metrics_name
,
metrics
):
logs
[
k
]
=
v
logs
[
'step'
]
=
step
if
mode
==
'train'
or
self
.
_adapter
.
_merge_count
.
get
(
mode
+
'_batch'
,
0
)
<=
0
:
if
mode
==
'train'
or
self
.
_adapter
.
_merge_count
.
get
(
mode
+
'_batch'
,
0
)
<=
0
:
logs
[
'batch_size'
]
=
batch_size
*
distributed
.
Env
().
nranks
else
:
logs
[
'batch_size'
]
=
self
.
_adapter
.
_merge_count
[
mode
+
'_batch'
]
logs
[
'batch_size'
]
=
self
.
_adapter
.
_merge_count
[
mode
+
'_batch'
]
cbks
.
on_batch_end
(
mode
,
step
,
logs
)
self
.
_reset_metrics
()
...
...
tests/test_model.py
浏览文件 @
b1862cf7
...
...
@@ -151,16 +151,18 @@ class TestModel(unittest.TestCase):
train_dataset
=
MnistDataset
(
mode
=
'train'
)
val_dataset
=
MnistDataset
(
mode
=
'test'
)
model
=
MNIST
()
if
not
is_mlp
else
MLP
()
optim
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.01
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
learning_rate
=
0.01
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
loss
=
CrossEntropy
()
if
not
is_mlp
else
MyCrossEntropy
()
model
.
prepare
(
optim
,
loss
,
Accuracy
(),
inputs
,
labels
)
cbk
=
ProgBarLogger
(
50
)
model
.
fit
(
train_dataset
,
val_dataset
,
epochs
=
2
,
batch_size
=
batch_size
,
callbacks
=
cbk
)
model
.
fit
(
train_dataset
,
val_dataset
,
epochs
=
2
,
batch_size
=
batch_size
,
callbacks
=
cbk
)
def
test_fit_static
(
self
):
self
.
fit
(
False
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录