Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
a3e6b21e
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a3e6b21e
编写于
3月 26, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add evaluate
上级
6d9e77b9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
151 addition
and
63 deletion
+151
-63
callbacks.py
callbacks.py
+6
-0
model.py
model.py
+142
-63
tests/test_model.py
tests/test_model.py
+3
-0
未找到文件。
callbacks.py
浏览文件 @
a3e6b21e
...
@@ -242,6 +242,12 @@ class ProgBarLogger(Callback):
...
@@ -242,6 +242,12 @@ class ProgBarLogger(Callback):
samples
=
logs
.
get
(
'batch_size'
,
1
)
samples
=
logs
.
get
(
'batch_size'
,
1
)
self
.
evaled_samples
+=
samples
self
.
evaled_samples
+=
samples
if
self
.
eval_step
%
self
.
log_freq
==
0
and
self
.
verbose
and
ParallelEnv
(
).
local_rank
==
0
:
# if steps is not None, last step will update in on_epoch_end
if
self
.
eval_steps
and
self
.
eval_step
<
self
.
eval_steps
:
self
.
_updates
(
logs
,
'eval'
)
def
on_eval_end
(
self
,
logs
=
None
):
def
on_eval_end
(
self
,
logs
=
None
):
logs
=
logs
or
{}
logs
=
logs
or
{}
if
self
.
verbose
and
ParallelEnv
().
local_rank
==
0
:
if
self
.
verbose
and
ParallelEnv
().
local_rank
==
0
:
...
...
model.py
浏览文件 @
a3e6b21e
...
@@ -696,7 +696,6 @@ class Model(fluid.dygraph.Layer):
...
@@ -696,7 +696,6 @@ class Model(fluid.dygraph.Layer):
self
.
_loss_weights
=
None
self
.
_loss_weights
=
None
self
.
_optimizer
=
None
self
.
_optimizer
=
None
self
.
_device
=
None
self
.
_device
=
None
self
.
_device_ids
=
None
self
.
_optimizer
=
None
self
.
_optimizer
=
None
self
.
_test_dataloader
=
None
self
.
_test_dataloader
=
None
...
@@ -794,8 +793,7 @@ class Model(fluid.dygraph.Layer):
...
@@ -794,8 +793,7 @@ class Model(fluid.dygraph.Layer):
metrics
=
None
,
metrics
=
None
,
inputs
=
None
,
inputs
=
None
,
labels
=
None
,
labels
=
None
,
device
=
None
,
device
=
None
):
device_ids
=
None
):
"""
"""
FIXME: add comments
FIXME: add comments
Args:
Args:
...
@@ -818,17 +816,6 @@ class Model(fluid.dygraph.Layer):
...
@@ -818,17 +816,6 @@ class Model(fluid.dygraph.Layer):
device (str|None): specify device type, 'CPU' or 'GPU'.
device (str|None): specify device type, 'CPU' or 'GPU'.
If None, automatically select device according to
If None, automatically select device according to
installation package version.
installation package version.
device_ids (list[int]|None): specify device index. If None,
the available device will be obtained from the environment
variable when the model is executed: If the GPU is used, the
currently available device ID is obtained from the environment
variable FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES when the
model is executed; CPU, when the model is executed,
the currently available CPU number is obtained from the
environment variable CPU_NUM. For example, export CPU_NUM=4,
if the environment variable is not set, the executor will add
the variable to the environment variable and set its value to 1.
The default is None.
"""
"""
if
isinstance
(
device
,
fluid
.
CUDAPlace
)
or
\
if
isinstance
(
device
,
fluid
.
CUDAPlace
)
or
\
...
@@ -991,71 +978,163 @@ class Model(fluid.dygraph.Layer):
...
@@ -991,71 +978,163 @@ class Model(fluid.dygraph.Layer):
verbose
=
verbose
,
verbose
=
verbose
,
metrics
=
self
.
_metrics_name
(),
)
metrics
=
self
.
_metrics_name
(),
)
def
_run_one_epoch
(
data_loader
,
callbacks
,
mode
):
size
=
len
(
data_loader
)
if
hasattr
(
data_loader
,
'__len__'
)
else
None
logs
=
{
'steps'
:
size
,
'metrics_name'
:
metrics_name
,
}
for
step
,
data
in
enumerate
(
data_loader
):
if
not
fluid
.
in_dygraph_mode
():
data
=
data
[
0
]
batch_size
=
data
[
0
].
shape
()[
0
]
else
:
batch_size
=
data
[
0
].
shape
[
0
]
cbks
.
on_batch_begin
(
mode
,
step
,
logs
)
if
mode
==
'train'
:
outs
=
self
.
train
(
*
data
)
else
:
outs
=
self
.
eval
(
*
data
)
# losses
loss
=
outs
[
0
]
if
self
.
_metrics
else
outs
metrics
=
[[
l
[
0
]
for
l
in
loss
]]
# metrics
for
metric
in
self
.
_metrics
:
res
=
metric
.
accumulate
()
metrics
.
extend
(
to_list
(
res
))
assert
len
(
metrics_name
)
==
len
(
metrics
)
for
k
,
v
in
zip
(
metrics_name
,
metrics
):
logs
[
k
]
=
v
logs
[
'step'
]
=
step
if
mode
==
'train'
or
self
.
_adapter
.
_merge_count
.
get
(
mode
+
'_batch'
,
0
)
<=
0
:
logs
[
'batch_size'
]
=
batch_size
*
ParallelEnv
().
nranks
else
:
logs
[
'batch_size'
]
=
self
.
_adapter
.
_merge_count
[
mode
+
'_batch'
]
cbks
.
on_batch_end
(
mode
,
step
,
logs
)
self
.
_reset_metrics
()
return
logs
cbks
.
on_begin
(
'train'
)
cbks
.
on_begin
(
'train'
)
for
epoch
in
range
(
epochs
):
for
epoch
in
range
(
epochs
):
cbks
.
on_epoch_begin
(
epoch
)
# FIXME: adapt to DataLoader
# FIXME: adapt to DataLoader
loader
=
train_loader
loader
=
train_loader
if
not
isinstance
(
train_loader
,
Iterable
):
if
not
isinstance
(
train_loader
,
Iterable
):
loader
=
train_loader
()
loader
=
train_loader
()
logs
=
_run_one_epoch
(
loader
,
cbks
,
'train'
)
logs
=
self
.
_run_one_epoch
(
loader
,
cbks
,
'train'
,
metrics_name
,
epoch
=
epoch
)
cbks
.
on_epoch_end
(
epoch
,
logs
)
cbks
.
on_epoch_end
(
epoch
,
logs
)
if
do_eval
and
epoch
%
eval_freq
==
0
:
if
do_eval
and
epoch
%
eval_freq
==
0
:
cbks
.
on_begin
(
'eval'
,
logs
)
# FIXME: adapt to DataLoader
# FIXME: adapt to DataLoader
loader
=
eval_loader
loader
=
eval_loader
if
not
isinstance
(
eval_loader
,
Iterable
):
if
not
isinstance
(
eval_loader
,
Iterable
):
loader
=
eval_loader
()
loader
=
eval_loader
()
logs
=
_run_one_epoch
(
loader
,
cbks
,
'eval'
)
logs
=
self
.
_run_one_epoch
(
loader
,
cbks
,
'eval'
,
metrics_name
)
cbks
.
on_end
(
'eval'
,
logs
)
cbks
.
on_end
(
'eval'
,
logs
)
cbks
.
on_end
(
'train'
,
logs
)
cbks
.
on_end
(
'train'
,
logs
)
self
.
_test_dataloader
=
None
def
evaluate
(
self
,
eval_data
,
batch_size
=
1
,
log_freq
=
10
,
verbose
=
2
,
num_workers
=
0
,
callbacks
=
None
,
):
"""
FIXME: add more comments and usage
Args:
eval_data (Dataset|DataLoader): An iterable data loader is used for
evaluation at the end of epoch. If None, will not do evaluation.
An instance of paddle.fluid.io.Dataset or paddle.fluid.io.Dataloader
is recomended.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
parameter will be ignored.
verbose (int): The verbosity mode, should be 0, 1, or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch.
num_workers (int): the number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this parameter will be ignored.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted.
"""
if
fluid
.
in_dygraph_mode
():
feed_list
=
None
else
:
feed_list
=
[
x
.
forward
()
for
x
in
self
.
_inputs
+
self
.
_labels
]
if
eval_data
is
not
None
and
isinstance
(
eval_data
,
Dataset
):
eval_sampler
=
DistributedBatchSampler
(
eval_data
,
batch_size
=
batch_size
)
eval_loader
=
DataLoader
(
eval_data
,
batch_sampler
=
eval_sampler
,
places
=
self
.
_place
,
feed_list
=
feed_list
,
num_workers
=
num_workers
,
return_list
=
True
)
elif
eval_data
is
not
None
:
eval_loader
=
eval_data
else
:
eval_loader
=
None
self
.
_test_dataloader
=
eval_loader
metrics_name
=
self
.
_metrics_name
()
steps
=
len
(
eval_loader
)
cbks
=
config_callbacks
(
callbacks
,
model
=
self
,
steps
=
steps
,
log_freq
=
log_freq
,
verbose
=
verbose
,
metrics
=
self
.
_metrics_name
(),
)
loader
=
eval_loader
if
not
isinstance
(
eval_loader
,
Iterable
):
loader
=
eval_loader
()
logs
=
self
.
_run_one_epoch
(
loader
,
cbks
,
'eval'
,
metrics_name
)
cbks
.
on_end
(
'eval'
,
logs
)
self
.
_test_dataloader
=
None
def
set_eval_data
(
self
,
eval_data
):
"""
Args:
eval_data (Dataset|DataLoader|None): An iterable data loader is used for
eval. An instance of paddle.fluid.io.Dataset or
paddle.fluid.io.Dataloader is recomended.
"""
assert
isinstance
(
eval_data
,
DataLoader
),
"eval_data must be a instance of Dataloader!"
self
.
_test_dataloader
=
eval_data
def
_run_one_epoch
(
self
,
data_loader
,
callbacks
,
mode
,
metrics_name
,
epoch
=
None
):
size
=
len
(
data_loader
)
if
hasattr
(
data_loader
,
'__len__'
)
else
None
logs
=
{
'steps'
:
size
,
'metrics_name'
:
metrics_name
,
}
callbacks
.
on_begin
(
mode
,
logs
)
if
mode
==
'train'
:
assert
epoch
is
not
None
,
'when mode is train, '
callbacks
.
on_epoch_begin
(
epoch
)
for
step
,
data
in
enumerate
(
data_loader
):
if
not
fluid
.
in_dygraph_mode
():
data
=
data
[
0
]
batch_size
=
data
[
0
].
shape
()[
0
]
else
:
batch_size
=
data
[
0
].
shape
[
0
]
callbacks
.
on_batch_begin
(
mode
,
step
,
logs
)
if
mode
==
'train'
:
outs
=
self
.
train
(
*
data
)
else
:
outs
=
self
.
eval
(
*
data
)
# losses
loss
=
outs
[
0
]
if
self
.
_metrics
else
outs
metrics
=
[[
l
[
0
]
for
l
in
loss
]]
# metrics
for
metric
in
self
.
_metrics
:
res
=
metric
.
accumulate
()
metrics
.
extend
(
to_list
(
res
))
assert
len
(
metrics_name
)
==
len
(
metrics
)
for
k
,
v
in
zip
(
metrics_name
,
metrics
):
logs
[
k
]
=
v
logs
[
'step'
]
=
step
if
mode
==
'train'
or
self
.
_adapter
.
_merge_count
.
get
(
mode
+
'_batch'
,
0
)
<=
0
:
logs
[
'batch_size'
]
=
batch_size
*
ParallelEnv
().
nranks
else
:
logs
[
'batch_size'
]
=
self
.
_adapter
.
_merge_count
[
mode
+
'_batch'
]
callbacks
.
on_batch_end
(
mode
,
step
,
logs
)
self
.
_reset_metrics
()
return
logs
def
_reset_metrics
(
self
):
def
_reset_metrics
(
self
):
for
metric
in
self
.
_metrics
:
for
metric
in
self
.
_metrics
:
...
...
tests/test_model.py
浏览文件 @
a3e6b21e
...
@@ -159,12 +159,15 @@ class TestModel(unittest.TestCase):
...
@@ -159,12 +159,15 @@ class TestModel(unittest.TestCase):
loss
=
CrossEntropy
()
if
not
is_mlp
else
MyCrossEntropy
()
loss
=
CrossEntropy
()
if
not
is_mlp
else
MyCrossEntropy
()
model
.
prepare
(
optim
,
loss
,
Accuracy
(),
inputs
,
labels
,
device
=
device
)
model
.
prepare
(
optim
,
loss
,
Accuracy
(),
inputs
,
labels
,
device
=
device
)
cbk
=
ProgBarLogger
(
50
)
cbk
=
ProgBarLogger
(
50
)
model
.
fit
(
train_dataset
,
model
.
fit
(
train_dataset
,
val_dataset
,
val_dataset
,
epochs
=
2
,
epochs
=
2
,
batch_size
=
batch_size
,
batch_size
=
batch_size
,
callbacks
=
cbk
)
callbacks
=
cbk
)
model
.
evaluate
(
val_dataset
,
batch_size
=
batch_size
)
def
test_fit_static
(
self
):
def
test_fit_static
(
self
):
self
.
fit
(
False
)
self
.
fit
(
False
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录