提交 90db7136 编写于 作者: 0 0YuanZhang0

Merge branch 'master' of https://github.com/PaddlePaddle/hapi into sequence_tagging

# Cycle GAN
---
## 内容
- [安装](#安装)
- [简介](#简介)
- [代码结构](#代码结构)
- [数据准备](#数据准备)
- [模型训练与预测](#模型训练与预测)
## 安装
运行本目录下的程序示例需要使用PaddlePaddle develop最新版本。如果您的PaddlePaddle安装版本低于此要求,请按照[安装文档](http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/pip_install_cn.html)中的说明更新PaddlePaddle安装版本。
## 简介
Cycle GAN 是一种image to image 的图像生成网络,实现了非对称图像数据集的生成和风格迁移。模型结构如下图所示,我们的模型包含两个生成网络 G: X → Y 和 F: Y → X,以及相关的判别器 DY 和 DX 。通过训练DY,使G将X图尽量转换为Y图,反之亦然。同时引入两个“周期一致性损失”,它们保证:如果我们从一个领域转换到另一个领域,它还可以被转换回去:(b)正向循环一致性损失:x→G(x)→F(G(x))≈x, (c)反向循环一致性损失:y→F(y)→G(F(y))≈y
<p align="center">
<img src="image/net.png" hspace='10'/> <br />
图1.网络结构
</p>
## 代码结构
```
├── data.py # 读取、处理数据。
├── layers.py # 封装定义基础的layers。
├── cyclegan.py # 定义基础生成网络和判别网络。
├── train.py # 训练脚本。
└── infer.py # 预测脚本。
```
## 数据准备
CycleGAN 支持的数据集可以参考download.py中的`cycle_pix_dataset`,可以通过指定`python download.py --dataset xxx` 下载得到。
由于版权问题,cityscapes 数据集无法通过脚本直接获得,需要从[官方](https://www.cityscapes-dataset.com/)下载数据,
下载完之后执行`python prepare_cityscapes_dataset.py --gtFine_dir ./gtFine/ --leftImg8bit_dir ./leftImg8bit --output_dir ./data/cityscapes/`处理,
将数据存放在`data/cityscapes`
数据下载处理完毕后,需要您将数据组织为以下路径结构:
```
data
|-- cityscapes
| |-- testA
| |-- testB
| |-- trainA
| |-- trainB
```
然后运行txt生成脚本:`python generate_txt.py`,最终数据组织如下所示:
```
data
|-- cityscapes
| |-- testA
| |-- testA.txt
| |-- testB
| |-- testB.txt
| |-- trainA
| |-- trainA.txt
| |-- trainB
| `-- trainB.txt
```
以上数据文件中,`data`文件夹需要放在训练脚本`train.py`同级目录下。`testA`为存放真实街景图片的文件夹,`testB`为存放语义分割图片的文件夹,`testA.txt``testB.txt`分别为测试图片路径列表文件,格式如下:
```
data/cityscapes/testA/234_A.jpg
data/cityscapes/testA/292_A.jpg
data/cityscapes/testA/412_A.jpg
```
训练数据组织方式与测试数据相同。
## 模型训练与预测
### 训练
在GPU单卡上训练:
```
env CUDA_VISIBLE_DEVICES=0 python train.py
```
执行`python train.py --help`可查看更多使用方式和参数详细说明。
图1为训练152轮的训练损失示意图,其中横坐标轴为训练轮数,纵轴为在训练集上的损失。其中,'g_loss','da_loss'和'db_loss'分别为生成器、判别器A和判别器B的训练损失。
### 测试
执行以下命令可以选择已保存的训练权重,对测试集进行测试,通过 `--epoch` 制定权重轮次:
```
env CUDA_VISIBLE_DEVICES=0 python test.py --init_model=checkpoint/199
```
生成结果在 `output/eval`
### 预测
执行以下命令读取单张或多张图片进行预测:
真实街景生成分割图像:
```
env CUDA_VISIBLE_DEVICES=0 python infer.py \
--init_model="./checkpoints/199" --input="./image/testA/123_A.jpg" \
--input_style=A
```
分割图像生成真实街景:
```
env CUDA_VISIBLE_DEVICES=0 python infer.py \
--init_model="checkpoints/199" --input="./image/testB/78_B.jpg" \
--input_style=B
```
生成结果在 `output/single`
训练180轮的模型预测效果如fakeA和fakeB所示:
<p align="center">
<img src="image/A2B.png" width="620" hspace='10'/> <br/>
<strong>A2B</strong>
</p>
<p align="center">
<img src="image/B2A.png" width="620" hspace='10'/> <br/>
<strong>B2A</strong>
</p>
>在本文示例中,均可通过修改`CUDA_VISIBLE_DEVICES`改变使用的显卡号。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import paddle.fluid as fluid
__all__ = ['check_gpu', 'check_version']
def check_gpu(use_gpu):
"""
Log error and exit when set use_gpu=true in paddlepaddle
cpu version.
"""
err = "Config use_gpu cannot be set as true while you are " \
"using paddlepaddle cpu version ! \nPlease try: \n" \
"\t1. Install paddlepaddle-gpu to run model on GPU \n" \
"\t2. Set use_gpu as false in config file to run " \
"model on CPU"
try:
if use_gpu and not fluid.is_compiled_with_cuda():
print(err)
sys.exit(1)
except Exception as e:
pass
def check_version():
"""
Log error and exit when the installed version of paddlepaddle is
not satisfied.
"""
err = "PaddlePaddle version 1.6 or higher is required, " \
"or a suitable develop version is satisfied as well. \n" \
"Please make sure the version is good with your code." \
try:
fluid.require_version('1.7.0')
except Exception as e:
print(err)
sys.exit(1)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from layers import ConvBN, DeConvBN
import paddle.fluid as fluid
from model import Model, Loss
class ResnetBlock(fluid.dygraph.Layer):
def __init__(self, dim, dropout=False):
super(ResnetBlock, self).__init__()
self.dropout = dropout
self.conv0 = ConvBN(dim, dim, 3, 1)
self.conv1 = ConvBN(dim, dim, 3, 1, act=None)
def forward(self, inputs):
out_res = fluid.layers.pad2d(inputs, [1, 1, 1, 1], mode="reflect")
out_res = self.conv0(out_res)
if self.dropout:
out_res = fluid.layers.dropout(out_res, dropout_prob=0.5)
out_res = fluid.layers.pad2d(out_res, [1, 1, 1, 1], mode="reflect")
out_res = self.conv1(out_res)
return out_res + inputs
class ResnetGenerator(fluid.dygraph.Layer):
def __init__(self, input_channel, n_blocks=9, dropout=False):
super(ResnetGenerator, self).__init__()
self.conv0 = ConvBN(input_channel, 32, 7, 1)
self.conv1 = ConvBN(32, 64, 3, 2, padding=1)
self.conv2 = ConvBN(64, 128, 3, 2, padding=1)
dim = 128
self.resnet_blocks = []
for i in range(n_blocks):
block = self.add_sublayer("generator_%d" % (i + 1),
ResnetBlock(dim, dropout))
self.resnet_blocks.append(block)
self.deconv0 = DeConvBN(
dim, 32 * 2, 3, 2, padding=[1, 1], outpadding=[0, 1, 0, 1])
self.deconv1 = DeConvBN(
32 * 2, 32, 3, 2, padding=[1, 1], outpadding=[0, 1, 0, 1])
self.conv3 = ConvBN(
32, input_channel, 7, 1, norm=False, act=False, use_bias=True)
def forward(self, inputs):
pad_input = fluid.layers.pad2d(inputs, [3, 3, 3, 3], mode="reflect")
y = self.conv0(pad_input)
y = self.conv1(y)
y = self.conv2(y)
for resnet_block in self.resnet_blocks:
y = resnet_block(y)
y = self.deconv0(y)
y = self.deconv1(y)
y = fluid.layers.pad2d(y, [3, 3, 3, 3], mode="reflect")
y = self.conv3(y)
y = fluid.layers.tanh(y)
return y
class NLayerDiscriminator(fluid.dygraph.Layer):
def __init__(self, input_channel, d_dims=64, d_nlayers=3):
super(NLayerDiscriminator, self).__init__()
self.conv0 = ConvBN(
input_channel,
d_dims,
4,
2,
1,
norm=False,
use_bias=True,
relufactor=0.2)
nf_mult, nf_mult_prev = 1, 1
self.conv_layers = []
for n in range(1, d_nlayers):
nf_mult_prev = nf_mult
nf_mult = min(2**n, 8)
conv = self.add_sublayer(
'discriminator_%d' % (n),
ConvBN(
d_dims * nf_mult_prev,
d_dims * nf_mult,
4,
2,
1,
relufactor=0.2))
self.conv_layers.append(conv)
nf_mult_prev = nf_mult
nf_mult = min(2**d_nlayers, 8)
self.conv4 = ConvBN(
d_dims * nf_mult_prev, d_dims * nf_mult, 4, 1, 1, relufactor=0.2)
self.conv5 = ConvBN(
d_dims * nf_mult,
1,
4,
1,
1,
norm=False,
act=None,
use_bias=True,
relufactor=0.2)
def forward(self, inputs):
y = self.conv0(inputs)
for conv in self.conv_layers:
y = conv(y)
y = self.conv4(y)
y = self.conv5(y)
return y
class Generator(Model):
def __init__(self, input_channel=3):
super(Generator, self).__init__()
self.g = ResnetGenerator(input_channel)
def forward(self, input):
fake = self.g(input)
return fake
class GeneratorCombine(Model):
def __init__(self, g_AB=None, g_BA=None, d_A=None, d_B=None,
is_train=True):
super(GeneratorCombine, self).__init__()
self.g_AB = g_AB
self.g_BA = g_BA
self.is_train = is_train
if self.is_train:
self.d_A = d_A
self.d_B = d_B
def forward(self, input_A, input_B):
# Translate images to the other domain
fake_B = self.g_AB(input_A)
fake_A = self.g_BA(input_B)
# Translate images back to original domain
cyc_A = self.g_BA(fake_B)
cyc_B = self.g_AB(fake_A)
if not self.is_train:
return fake_A, fake_B, cyc_A, cyc_B
# Identity mapping of images
idt_A = self.g_AB(input_B)
idt_B = self.g_BA(input_A)
# Discriminators determines validity of translated images
# d_A(g_AB(A))
valid_A = self.d_A.d(fake_B)
# d_B(g_BA(A))
valid_B = self.d_B.d(fake_A)
return input_A, input_B, fake_A, fake_B, cyc_A, cyc_B, idt_A, idt_B, valid_A, valid_B
class GLoss(Loss):
def __init__(self, lambda_A=10., lambda_B=10., lambda_identity=0.5):
super(GLoss, self).__init__()
self.lambda_A = lambda_A
self.lambda_B = lambda_B
self.lambda_identity = lambda_identity
def forward(self, outputs, labels=None):
input_A, input_B, fake_A, fake_B, cyc_A, cyc_B, idt_A, idt_B, valid_A, valid_B = outputs
def mse(a, b):
return fluid.layers.reduce_mean(fluid.layers.square(a - b))
def mae(a, b): # L1Loss
return fluid.layers.reduce_mean(fluid.layers.abs(a - b))
g_A_loss = mse(valid_A, 1.)
g_B_loss = mse(valid_B, 1.)
g_loss = g_A_loss + g_B_loss
cyc_A_loss = mae(input_A, cyc_A) * self.lambda_A
cyc_B_loss = mae(input_B, cyc_B) * self.lambda_B
cyc_loss = cyc_A_loss + cyc_B_loss
idt_loss_A = mae(input_B, idt_A) * (self.lambda_B *
self.lambda_identity)
idt_loss_B = mae(input_A, idt_B) * (self.lambda_A *
self.lambda_identity)
idt_loss = idt_loss_A + idt_loss_B
loss = cyc_loss + g_loss + idt_loss
return loss
class Discriminator(Model):
def __init__(self, input_channel=3):
super(Discriminator, self).__init__()
self.d = NLayerDiscriminator(input_channel)
def forward(self, real, fake):
pred_real = self.d(real)
pred_fake = self.d(fake)
return pred_real, pred_fake
class DLoss(Loss):
def __init__(self):
super(DLoss, self).__init__()
def forward(self, inputs, labels=None):
pred_real, pred_fake = inputs
loss = fluid.layers.square(pred_fake) + fluid.layers.square(pred_real -
1.)
loss = fluid.layers.reduce_mean(loss / 2.0)
return loss
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import numpy as np
from PIL import Image, ImageOps
DATASET = "cityscapes"
A_LIST_FILE = "./data/" + DATASET + "/trainA.txt"
B_LIST_FILE = "./data/" + DATASET + "/trainB.txt"
A_TEST_LIST_FILE = "./data/" + DATASET + "/testA.txt"
B_TEST_LIST_FILE = "./data/" + DATASET + "/testB.txt"
IMAGES_ROOT = "./data/" + DATASET + "/"
import paddle.fluid as fluid
class Cityscapes(fluid.io.Dataset):
def __init__(self, root_path, file_path, mode='train', return_name=False):
self.root_path = root_path
self.file_path = file_path
self.mode = mode
self.return_name = return_name
self.images = [root_path + l for l in open(file_path, 'r').readlines()]
def _train(self, image):
## Resize
image = image.resize((286, 286), Image.BICUBIC)
## RandomCrop
i = np.random.randint(0, 30)
j = np.random.randint(0, 30)
image = image.crop((i, j, i + 256, j + 256))
# RandomHorizontalFlip
if np.random.rand() > 0.5:
image = ImageOps.mirror(image)
return image
def __getitem__(self, idx):
f = self.images[idx].strip("\n\r\t ")
image = Image.open(f)
if self.mode == 'train':
image = self._train(image)
else:
image = image.resize((256, 256), Image.BICUBIC)
# ToTensor
image = np.array(image).transpose([2, 0, 1]).astype('float32')
image = image / 255.0
# Normalize, mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]
image = (image - 0.5) / 0.5
if self.return_name:
return [image], os.path.basename(f)
else:
return [image]
def __len__(self):
return len(self.images)
def DataA(root=IMAGES_ROOT, fpath=A_LIST_FILE):
"""
Reader of images with A style for training.
"""
return Cityscapes(root, fpath)
def DataB(root=IMAGES_ROOT, fpath=B_LIST_FILE):
"""
Reader of images with B style for training.
"""
return Cityscapes(root, fpath)
def TestDataA(root=IMAGES_ROOT, fpath=A_TEST_LIST_FILE):
"""
Reader of images with A style for training.
"""
return Cityscapes(root, fpath, mode='test', return_name=True)
def TestDataB(root=IMAGES_ROOT, fpath=B_TEST_LIST_FILE):
"""
Reader of images with B style for training.
"""
return Cityscapes(root, fpath, mode='test', return_name=True)
class ImagePool(object):
def __init__(self, pool_size=50):
self.pool = []
self.count = 0
self.pool_size = pool_size
def get(self, image):
if self.count < self.pool_size:
self.pool.append(image)
self.count += 1
return image
else:
p = random.random()
if p > 0.5:
random_id = random.randint(0, self.pool_size - 1)
temp = self.pool[random_id]
self.pool[random_id] = image
return temp
else:
return image
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import glob
import numpy as np
import argparse
from PIL import Image
from scipy.misc import imsave
import paddle.fluid as fluid
from check import check_gpu, check_version
from model import Model, Input, set_device
from cyclegan import Generator, GeneratorCombine
def main():
place = set_device(FLAGS.device)
fluid.enable_dygraph(place) if FLAGS.dynamic else None
# Generators
g_AB = Generator()
g_BA = Generator()
g = GeneratorCombine(g_AB, g_BA, is_train=False)
im_shape = [-1, 3, 256, 256]
input_A = Input(im_shape, 'float32', 'input_A')
input_B = Input(im_shape, 'float32', 'input_B')
g.prepare(inputs=[input_A, input_B])
g.load(FLAGS.init_model, skip_mismatch=True, reset_optimizer=True)
out_path = FLAGS.output + "/single"
if not os.path.exists(out_path):
os.makedirs(out_path)
for f in glob.glob(FLAGS.input):
image_name = os.path.basename(f)
image = Image.open(f).convert('RGB')
image = image.resize((256, 256), Image.BICUBIC)
image = np.array(image) / 127.5 - 1
image = image[:, :, 0:3].astype("float32")
data = image.transpose([2, 0, 1])[np.newaxis, :]
if FLAGS.input_style == "A":
_, fake, _, _ = g.test([data, data])
if FLAGS.input_style == "B":
fake, _, _, _ = g.test([data, data])
fake = np.squeeze(fake[0]).transpose([1, 2, 0])
opath = "{}/fake{}{}".format(out_path, FLAGS.input_style, image_name)
imsave(opath, ((fake + 1) * 127.5).astype(np.uint8))
print("transfer {} to {}".format(f, opath))
if __name__ == "__main__":
parser = argparse.ArgumentParser("CycleGAN inference")
parser.add_argument(
"-d", "--dynamic", action='store_false', help="Enable dygraph mode")
parser.add_argument(
"-p",
"--device",
type=str,
default='gpu',
help="device to use, gpu or cpu")
parser.add_argument(
"-i",
"--input",
type=str,
default='./image/testA/123_A.jpg',
help="input image")
parser.add_argument(
"-o",
'--output',
type=str,
default='output',
help="The test result to be saved to.")
parser.add_argument(
"-m",
"--init_model",
type=str,
default='checkpoint/199',
help="The init model file of directory.")
parser.add_argument(
"-s", "--input_style", type=str, default='A', help="A or B")
FLAGS = parser.parse_args()
print(FLAGS)
check_gpu(str.lower(FLAGS.device) == 'gpu')
check_version()
main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Conv2DTranspose, BatchNorm
# cudnn is not better when batch size is 1.
use_cudnn = False
import numpy as np
class ConvBN(fluid.dygraph.Layer):
"""docstring for Conv2D"""
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
padding=0,
stddev=0.02,
norm=True,
is_test=False,
act='leaky_relu',
relufactor=0.0,
use_bias=False):
super(ConvBN, self).__init__()
pattr = fluid.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=stddev))
self.conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
use_cudnn=use_cudnn,
param_attr=pattr,
bias_attr=use_bias)
if norm:
self.bn = BatchNorm(
num_filters,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NormalInitializer(1.0,
0.02)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(0.0)),
is_test=False,
trainable_statistics=True)
self.relufactor = relufactor
self.norm = norm
self.act = act
def forward(self, inputs):
conv = self.conv(inputs)
if self.norm:
conv = self.bn(conv)
if self.act == 'leaky_relu':
conv = fluid.layers.leaky_relu(conv, alpha=self.relufactor)
elif self.act == 'relu':
conv = fluid.layers.relu(conv)
else:
conv = conv
return conv
class DeConvBN(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
padding=[0, 0],
outpadding=[0, 0, 0, 0],
stddev=0.02,
act='leaky_relu',
norm=True,
is_test=False,
relufactor=0.0,
use_bias=False):
super(DeConvBN, self).__init__()
pattr = fluid.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=stddev))
self._deconv = Conv2DTranspose(
num_channels,
num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
param_attr=pattr,
bias_attr=use_bias)
if norm:
self.bn = BatchNorm(
num_filters,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NormalInitializer(1.0,
0.02)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(0.0)),
is_test=False,
trainable_statistics=True)
self.outpadding = outpadding
self.relufactor = relufactor
self.use_bias = use_bias
self.norm = norm
self.act = act
def forward(self, inputs):
conv = self._deconv(inputs)
conv = fluid.layers.pad2d(
conv, paddings=self.outpadding, mode='constant', pad_value=0.0)
if self.norm:
conv = self.bn(conv)
if self.act == 'leaky_relu':
conv = fluid.layers.leaky_relu(conv, alpha=self.relufactor)
elif self.act == 'relu':
conv = fluid.layers.relu(conv)
else:
conv = conv
return conv
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
import numpy as np
from scipy.misc import imsave
import paddle.fluid as fluid
from check import check_gpu, check_version
from model import Model, Input, set_device
from cyclegan import Generator, GeneratorCombine
import data as data
def main():
place = set_device(FLAGS.device)
fluid.enable_dygraph(place) if FLAGS.dynamic else None
# Generators
g_AB = Generator()
g_BA = Generator()
g = GeneratorCombine(g_AB, g_BA, is_train=False)
im_shape = [-1, 3, 256, 256]
input_A = Input(im_shape, 'float32', 'input_A')
input_B = Input(im_shape, 'float32', 'input_B')
g.prepare(inputs=[input_A, input_B])
g.load(FLAGS.init_model, skip_mismatch=True, reset_optimizer=True)
if not os.path.exists(FLAGS.output):
os.makedirs(FLAGS.output)
test_data_A = data.TestDataA()
test_data_B = data.TestDataB()
for i in range(len(test_data_A)):
data_A, A_name = test_data_A[i]
data_B, B_name = test_data_B[i]
data_A = np.array(data_A).astype("float32")
data_B = np.array(data_B).astype("float32")
fake_A, fake_B, cyc_A, cyc_B = g.test([data_A, data_B])
datas = [fake_A, fake_B, cyc_A, cyc_B, data_A, data_B]
odatas = []
for o in datas:
d = np.squeeze(o[0]).transpose([1, 2, 0])
im = ((d + 1) * 127.5).astype(np.uint8)
odatas.append(im)
imsave(FLAGS.output + "/fakeA_" + B_name, odatas[0])
imsave(FLAGS.output + "/fakeB_" + A_name, odatas[1])
imsave(FLAGS.output + "/cycA_" + A_name, odatas[2])
imsave(FLAGS.output + "/cycB_" + B_name, odatas[3])
imsave(FLAGS.output + "/inputA_" + A_name, odatas[4])
imsave(FLAGS.output + "/inputB_" + B_name, odatas[5])
if __name__ == "__main__":
parser = argparse.ArgumentParser("CycleGAN test")
parser.add_argument(
"-d", "--dynamic", action='store_false', help="Enable dygraph mode")
parser.add_argument(
"-p",
"--device",
type=str,
default='gpu',
help="device to use, gpu or cpu")
parser.add_argument(
"-b", "--batch_size", default=1, type=int, help="batch size")
parser.add_argument(
"-o",
'--output',
type=str,
default='output/eval',
help="The test result to be saved to.")
parser.add_argument(
"-m",
"--init_model",
type=str,
default='checkpoint/199',
help="The init model file of directory.")
FLAGS = parser.parse_args()
print(FLAGS)
check_gpu(str.lower(FLAGS.device) == 'gpu')
check_version()
main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import random
import argparse
import contextlib
import time
import paddle
import paddle.fluid as fluid
from check import check_gpu, check_version
from model import Model, Input, set_device
import data as data
from cyclegan import Generator, Discriminator, GeneratorCombine, GLoss, DLoss
step_per_epoch = 2974
def opt(parameters):
lr_base = 0.0002
bounds = [100, 120, 140, 160, 180]
lr = [1., 0.8, 0.6, 0.4, 0.2, 0.1]
bounds = [i * step_per_epoch for i in bounds]
lr = [i * lr_base for i in lr]
optimizer = fluid.optimizer.Adam(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bounds, values=lr),
parameter_list=parameters,
beta1=0.5)
return optimizer
def main():
place = set_device(FLAGS.device)
fluid.enable_dygraph(place) if FLAGS.dynamic else None
# Generators
g_AB = Generator()
g_BA = Generator()
# Discriminators
d_A = Discriminator()
d_B = Discriminator()
g = GeneratorCombine(g_AB, g_BA, d_A, d_B)
da_params = d_A.parameters()
db_params = d_B.parameters()
g_params = g_AB.parameters() + g_BA.parameters()
da_optimizer = opt(da_params)
db_optimizer = opt(db_params)
g_optimizer = opt(g_params)
im_shape = [None, 3, 256, 256]
input_A = Input(im_shape, 'float32', 'input_A')
input_B = Input(im_shape, 'float32', 'input_B')
fake_A = Input(im_shape, 'float32', 'fake_A')
fake_B = Input(im_shape, 'float32', 'fake_B')
g_AB.prepare(inputs=[input_A])
g_BA.prepare(inputs=[input_B])
g.prepare(g_optimizer, GLoss(), inputs=[input_A, input_B])
d_A.prepare(da_optimizer, DLoss(), inputs=[input_B, fake_B])
d_B.prepare(db_optimizer, DLoss(), inputs=[input_A, fake_A])
if FLAGS.resume:
g.load(FLAGS.resume)
loader_A = fluid.io.DataLoader(
data.DataA(),
places=place,
shuffle=True,
return_list=True,
batch_size=FLAGS.batch_size)
loader_B = fluid.io.DataLoader(
data.DataB(),
places=place,
shuffle=True,
return_list=True,
batch_size=FLAGS.batch_size)
A_pool = data.ImagePool()
B_pool = data.ImagePool()
for epoch in range(FLAGS.epoch):
for i, (data_A, data_B) in enumerate(zip(loader_A, loader_B)):
data_A = data_A[0][0] if not FLAGS.dynamic else data_A[0]
data_B = data_B[0][0] if not FLAGS.dynamic else data_B[0]
start = time.time()
fake_B = g_AB.test(data_A)[0]
fake_A = g_BA.test(data_B)[0]
g_loss = g.train([data_A, data_B])[0]
fake_pb = B_pool.get(fake_B)
da_loss = d_A.train([data_B, fake_pb])[0]
fake_pa = A_pool.get(fake_A)
db_loss = d_B.train([data_A, fake_pa])[0]
t = time.time() - start
if i % 20 == 0:
print("epoch: {} | step: {:3d} | g_loss: {:.4f} | " \
"da_loss: {:.4f} | db_loss: {:.4f} | s/step {:.4f}".
format(epoch, i, g_loss[0], da_loss[0], db_loss[0], t))
g.save('{}/{}'.format(FLAGS.checkpoint_path, epoch))
if __name__ == "__main__":
parser = argparse.ArgumentParser("CycleGAN Training on Cityscapes")
parser.add_argument(
"-d", "--dynamic", action='store_false', help="Enable dygraph mode")
parser.add_argument(
"-p",
"--device",
type=str,
default='gpu',
help="device to use, gpu or cpu")
parser.add_argument(
"-e", "--epoch", default=200, type=int, help="Epoch number")
parser.add_argument(
"-b", "--batch_size", default=1, type=int, help="batch size")
parser.add_argument(
"-o",
"--checkpoint_path",
type=str,
default='checkpoint',
help="path to save checkpoint")
parser.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="checkpoint path to resume")
FLAGS = parser.parse_args()
print(FLAGS)
check_gpu(str.lower(FLAGS.device) == 'gpu')
check_version()
main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import cv2
......@@ -6,11 +20,11 @@ from paddle.fluid.io import Dataset
def has_valid_extension(filename, extensions):
"""Checks if a file is an allowed extension.
"""Checks if a file is a vilid extension.
Args:
filename (string): path to a file
extensions (tuple of strings): extensions to consider (lowercase)
filename (str): path to a file
extensions (tuple of str): extensions to consider (lowercase)
Returns:
bool: True if the filename ends with one of given extensions
......
......@@ -30,6 +30,7 @@
```bash
python -u main.py --arch resnet50 /path/to/imagenet -d
```
-d 是使用动态模式训练,默认为静态图模式。
### 多卡训练
执行如下命令进行训练
......@@ -64,11 +65,28 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch main.py --arch
* **output-dir**: 模型文件保存的文件夹,默认值:'output'
* **num-workers**: dataloader的进程数,默认值:4
* **resume**: 恢复训练的模型路径,默认值:None
* **eval-only**: 仅仅进行预测,默认值:False
* **eval-only**: 是否仅仅进行预测
* **lr-scheduler**: 学习率衰减策略,默认值:piecewise
* **milestones**: piecewise学习率衰减策略的边界,默认值:[30, 60, 80]
* **weight-decay**: 模型权重正则化系数,默认值:1e-4
* **momentum**: SGD优化器的动量,默认值:0.9
## 模型
| 模型 | top1 acc | top5 acc |
| --- | --- | --- |
| ResNet50 | 76.28 | 93.04 |
| [ResNet50](https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams) | 76.28 | 93.04 |
| [vgg16](https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams) | 71.84 | 90.71 |
| [mobilenet_v1](https://paddle-hapi.bj.bcebos.com/models/mobilenet_v1_x1.0.pdparams) | 71.25 | 89.92 |
| [mobilenet_v2](https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams) | 72.27 | 90.66 |
上述模型的复现参数请参考scripts下的脚本。
## 参考文献
- ResNet: [Deep Residual Learning for Image Recognitio](https://arxiv.org/abs/1512.03385), Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
- MobileNetV1: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861), Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
- MobileNetV2: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/pdf/1801.04381v4.pdf), Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
- VGG: [Very Deep Convolutional Networks for Large-scale Image Recognition](https://arxiv.org/pdf/1409.1556), Karen Simonyan, Andrew Zisserman
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import math
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -37,23 +37,36 @@ from paddle.fluid.io import BatchSampler, DataLoader
def make_optimizer(step_per_epoch, parameter_list=None):
base_lr = FLAGS.lr
momentum = 0.9
weight_decay = 1e-4
lr_scheduler = FLAGS.lr_scheduler
momentum = FLAGS.momentum
weight_decay = FLAGS.weight_decay
if lr_scheduler == 'piecewise':
milestones = FLAGS.milestones
boundaries = [step_per_epoch * e for e in milestones]
values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
learning_rate = fluid.layers.piecewise_decay(
boundaries=boundaries, values=values)
elif lr_scheduler == 'cosine':
learning_rate = fluid.layers.cosine_decay(base_lr, step_per_epoch,
FLAGS.epoch)
else:
raise ValueError(
"Expected lr_scheduler in ['piecewise', 'cosine'], but got {}".
format(lr_scheduler))
boundaries = [step_per_epoch * e for e in [30, 60, 80]]
values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
learning_rate = fluid.layers.piecewise_decay(
boundaries=boundaries, values=values)
learning_rate = fluid.layers.linear_lr_warmup(
learning_rate=learning_rate,
warmup_steps=5 * step_per_epoch,
start_lr=0.,
end_lr=base_lr)
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=momentum,
regularization=fluid.regularizer.L2Decay(weight_decay),
parameter_list=parameter_list)
return optimizer
......@@ -138,6 +151,20 @@ if __name__ == '__main__':
help="checkpoint path to resume")
parser.add_argument(
"--eval-only", action='store_true', help="enable dygraph mode")
parser.add_argument(
"--lr-scheduler",
default='piecewise',
type=str,
help="learning rate scheduler")
parser.add_argument(
"--milestones",
nargs='+',
type=int,
default=[30, 60, 80],
help="piecewise decay milestones")
parser.add_argument(
"--weight-decay", default=1e-4, type=float, help="weight decay")
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
FLAGS = parser.parse_args()
assert FLAGS.data, "error: must provide data path"
main()
......@@ -42,6 +42,14 @@ __all__ = ['Model', 'Loss', 'CrossEntropy', 'Input', 'set_device']
def set_device(device):
"""
Args:
device (str): specify device type, 'cpu' or 'gpu'.
Returns:
fluid.CUDAPlace or fluid.CPUPlace: Created GPU or CPU place.
"""
assert isinstance(device, six.string_types) and device.lower() in ['cpu', 'gpu'], \
"Expected device in ['cpu', 'gpu'], but got {}".format(device)
......@@ -114,9 +122,9 @@ class Loss(object):
def forward(self, outputs, labels):
raise NotImplementedError()
def __call__(self, outputs, labels):
def __call__(self, outputs, labels=None):
labels = to_list(labels)
if in_dygraph_mode():
if in_dygraph_mode() and labels:
labels = [to_variable(l) for l in labels]
losses = to_list(self.forward(to_list(outputs), labels))
if self.average:
......@@ -853,8 +861,6 @@ class Model(fluid.dygraph.Layer):
if not isinstance(inputs, (list, dict, Input)):
raise TypeError(
"'inputs' must be list or dict in static graph mode")
if loss_function and not isinstance(labels, (list, Input)):
raise TypeError("'labels' must be list in static graph mode")
metrics = metrics or []
for metric in to_list(metrics):
......@@ -1084,7 +1090,11 @@ class Model(fluid.dygraph.Layer):
return eval_result
def predict(self, test_data, batch_size=1, num_workers=0, stack_outputs=True):
def predict(self,
test_data,
batch_size=1,
num_workers=0,
stack_outputs=True):
"""
FIXME: add more comments and usage
Args:
......
......@@ -13,13 +13,22 @@
#limitations under the License.
from . import resnet
from . import vgg
from . import mobilenetv1
from . import mobilenetv2
from . import darknet
from . import yolov3
from .resnet import *
from .mobilenetv1 import *
from .mobilenetv2 import *
from .vgg import *
from .darknet import *
from .yolov3 import *
__all__ = resnet.__all__ \
+ vgg.__all__ \
+ mobilenetv1.__all__ \
+ mobilenetv2.__all__ \
+ darknet.__all__ \
+ yolov3.__all__
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from model import Model
from .download import get_weights_path
__all__ = ['MobileNetV1', 'mobilenet_v1']
model_urls = {
'mobilenetv1_1.0':
('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v1_x1.0.pdparams',
'bf0d25cb0bed1114d9dac9384ce2b4a6')
}
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
act='relu',
use_cudnn=True,
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=ParamAttr(
initializer=MSRA(), name=self.full_name() + "_weights"),
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
moving_mean_name=self.full_name() + "_bn" + '_mean',
moving_variance_name=self.full_name() + "_bn" + '_variance')
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class DepthwiseSeparable(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters1,
num_filters2,
num_groups,
stride,
scale,
name=None):
super(DepthwiseSeparable, self).__init__()
self._depthwise_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=int(num_filters1 * scale),
filter_size=3,
stride=stride,
padding=1,
num_groups=int(num_groups * scale),
use_cudnn=False)
self._pointwise_conv = ConvBNLayer(
num_channels=int(num_filters1 * scale),
filter_size=1,
num_filters=int(num_filters2 * scale),
stride=1,
padding=0)
def forward(self, inputs):
y = self._depthwise_conv(inputs)
y = self._pointwise_conv(y)
return y
class MobileNetV1(Model):
"""MobileNetV1 model from
`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_.
Args:
scale (float): scale of channels in each layer. Default: 1.0.
class_dim (int): output dim of last fc layer. Default: 1000.
"""
def __init__(self, scale=1.0, class_dim=1000):
super(MobileNetV1, self).__init__()
self.scale = scale
self.dwsl = []
self.conv1 = ConvBNLayer(
num_channels=3,
filter_size=3,
channels=3,
num_filters=int(32 * scale),
stride=2,
padding=1)
dws21 = self.add_sublayer(
sublayer=DepthwiseSeparable(
num_channels=int(32 * scale),
num_filters1=32,
num_filters2=64,
num_groups=32,
stride=1,
scale=scale),
name="conv2_1")
self.dwsl.append(dws21)
dws22 = self.add_sublayer(
sublayer=DepthwiseSeparable(
num_channels=int(64 * scale),
num_filters1=64,
num_filters2=128,
num_groups=64,
stride=2,
scale=scale),
name="conv2_2")
self.dwsl.append(dws22)
dws31 = self.add_sublayer(
sublayer=DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=128,
num_groups=128,
stride=1,
scale=scale),
name="conv3_1")
self.dwsl.append(dws31)
dws32 = self.add_sublayer(
sublayer=DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=256,
num_groups=128,
stride=2,
scale=scale),
name="conv3_2")
self.dwsl.append(dws32)
dws41 = self.add_sublayer(
sublayer=DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=256,
num_groups=256,
stride=1,
scale=scale),
name="conv4_1")
self.dwsl.append(dws41)
dws42 = self.add_sublayer(
sublayer=DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=512,
num_groups=256,
stride=2,
scale=scale),
name="conv4_2")
self.dwsl.append(dws42)
for i in range(5):
tmp = self.add_sublayer(
sublayer=DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=512,
num_groups=512,
stride=1,
scale=scale),
name="conv5_" + str(i + 1))
self.dwsl.append(tmp)
dws56 = self.add_sublayer(
sublayer=DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=1024,
num_groups=512,
stride=2,
scale=scale),
name="conv5_6")
self.dwsl.append(dws56)
dws6 = self.add_sublayer(
sublayer=DepthwiseSeparable(
num_channels=int(1024 * scale),
num_filters1=1024,
num_filters2=1024,
num_groups=1024,
stride=1,
scale=scale),
name="conv6")
self.dwsl.append(dws6)
self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
self.out = Linear(
int(1024 * scale),
class_dim,
act='softmax',
param_attr=ParamAttr(
initializer=MSRA(), name=self.full_name() + "fc7_weights"),
bias_attr=ParamAttr(name="fc7_offset"))
def forward(self, inputs):
y = self.conv1(inputs)
for dws in self.dwsl:
y = dws(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, 1024])
y = self.out(y)
return y
def _mobilenet(arch, pretrained=False, **kwargs):
model = MobileNetV1(**kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path(model_urls[arch][0],
model_urls[arch][1])
assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams"
model.load(weight_path[:-9])
return model
def mobilenet_v1(pretrained=False, scale=1.0):
model = _mobilenet('mobilenetv1_' + str(scale), pretrained, scale=scale)
return model
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from model import Model
from .download import get_weights_path
__all__ = ['MobileNetV2', 'mobilenet_v2']
model_urls = {
'mobilenetv2_1.0':
('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams',
'8ff74f291f72533f2a7956a4efff9d88')
}
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
use_cudnn=True):
super(ConvBNLayer, self).__init__()
tmp_param = ParamAttr(name=self.full_name() + "_weights")
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=tmp_param,
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
moving_mean_name=self.full_name() + "_bn" + '_mean',
moving_variance_name=self.full_name() + "_bn" + '_variance')
def forward(self, inputs, if_act=True):
y = self._conv(inputs)
y = self._batch_norm(y)
if if_act:
y = fluid.layers.relu6(y)
return y
class InvertedResidualUnit(fluid.dygraph.Layer):
def __init__(
self,
num_channels,
num_in_filter,
num_filters,
stride,
filter_size,
padding,
expansion_factor, ):
super(InvertedResidualUnit, self).__init__()
num_expfilter = int(round(num_in_filter * expansion_factor))
self._expand_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=num_expfilter,
filter_size=1,
stride=1,
padding=0,
num_groups=1)
self._bottleneck_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_expfilter,
filter_size=filter_size,
stride=stride,
padding=padding,
num_groups=num_expfilter,
use_cudnn=False)
self._linear_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_filters,
filter_size=1,
stride=1,
padding=0,
num_groups=1)
def forward(self, inputs, ifshortcut):
y = self._expand_conv(inputs, if_act=True)
y = self._bottleneck_conv(y, if_act=True)
y = self._linear_conv(y, if_act=False)
if ifshortcut:
y = fluid.layers.elementwise_add(inputs, y)
return y
class InvresiBlocks(fluid.dygraph.Layer):
def __init__(self, in_c, t, c, n, s):
super(InvresiBlocks, self).__init__()
self._first_block = InvertedResidualUnit(
num_channels=in_c,
num_in_filter=in_c,
num_filters=c,
stride=s,
filter_size=3,
padding=1,
expansion_factor=t)
self._inv_blocks = []
for i in range(1, n):
tmp = self.add_sublayer(
sublayer=InvertedResidualUnit(
num_channels=c,
num_in_filter=c,
num_filters=c,
stride=1,
filter_size=3,
padding=1,
expansion_factor=t),
name=self.full_name() + "_" + str(i + 1))
self._inv_blocks.append(tmp)
def forward(self, inputs):
y = self._first_block(inputs, ifshortcut=False)
for inv_block in self._inv_blocks:
y = inv_block(y, ifshortcut=True)
return y
class MobileNetV2(Model):
"""MobileNetV2 model from
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
Args:
scale (float): scale of channels in each layer. Default: 1.0.
class_dim (int): output dim of last fc layer. Default: 1000.
"""
def __init__(self, scale=1.0, class_dim=1000):
super(MobileNetV2, self).__init__()
self.scale = scale
self.class_dim = class_dim
bottleneck_params_list = [
(1, 16, 1, 1),
(6, 24, 2, 2),
(6, 32, 3, 2),
(6, 64, 4, 2),
(6, 96, 3, 1),
(6, 160, 3, 2),
(6, 320, 1, 1),
]
#1. conv1
self._conv1 = ConvBNLayer(
num_channels=3,
num_filters=int(32 * scale),
filter_size=3,
stride=2,
padding=1)
#2. bottleneck sequences
self._invl = []
i = 1
in_c = int(32 * scale)
for layer_setting in bottleneck_params_list:
t, c, n, s = layer_setting
i += 1
tmp = self.add_sublayer(
sublayer=InvresiBlocks(
in_c=in_c, t=t, c=int(c * scale), n=n, s=s),
name='conv' + str(i))
self._invl.append(tmp)
in_c = int(c * scale)
#3. last_conv
self._out_c = int(1280 * scale) if scale > 1.0 else 1280
self._conv9 = ConvBNLayer(
num_channels=in_c,
num_filters=self._out_c,
filter_size=1,
stride=1,
padding=0)
#4. pool
self._pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
#5. fc
tmp_param = ParamAttr(name=self.full_name() + "fc10_weights")
self._fc = Linear(
self._out_c,
class_dim,
act='softmax',
param_attr=tmp_param,
bias_attr=ParamAttr(name="fc10_offset"))
def forward(self, inputs):
y = self._conv1(inputs, if_act=True)
for inv in self._invl:
y = inv(y)
y = self._conv9(y, if_act=True)
y = self._pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self._out_c])
y = self._fc(y)
return y
def _mobilenet(arch, pretrained=False, **kwargs):
model = MobileNetV2(**kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path(model_urls[arch][0],
model_urls[arch][1])
assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams"
model.load(weight_path[:-9])
return model
def mobilenet_v2(pretrained=False, scale=1.0):
"""MobileNetV2
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = _mobilenet('mobilenetv2_' + str(scale), pretrained, scale=scale)
return model
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
......@@ -11,7 +25,9 @@ from paddle.fluid.dygraph.container import Sequential
from model import Model
from .download import get_weights_path
__all__ = ['ResNet', 'resnet50', 'resnet101', 'resnet152']
__all__ = [
'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'
]
model_urls = {
'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams',
......@@ -48,7 +64,52 @@ class ConvBNLayer(fluid.dygraph.Layer):
return x
class BasicBlock(fluid.dygraph.Layer):
expansion = 1
def __init__(self, num_channels, num_filters, stride, shortcut=True):
super(BasicBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
act='relu')
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
stride=stride)
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = short + conv1
return fluid.layers.relu(y)
class BottleneckBlock(fluid.dygraph.Layer):
expansion = 4
def __init__(self, num_channels, num_filters, stride, shortcut=True):
super(BottleneckBlock, self).__init__()
......@@ -65,20 +126,20 @@ class BottleneckBlock(fluid.dygraph.Layer):
act='relu')
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
num_filters=num_filters * self.expansion,
filter_size=1,
act=None)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
num_filters=num_filters * self.expansion,
filter_size=1,
stride=stride)
self.shortcut = shortcut
self._num_channels_out = num_filters * 4
self._num_channels_out = num_filters * self.expansion
def forward(self, inputs):
x = self.conv0(inputs)
......@@ -92,16 +153,25 @@ class BottleneckBlock(fluid.dygraph.Layer):
x = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(x)
# return fluid.layers.relu(x)
return fluid.layers.relu(x)
class ResNet(Model):
"""ResNet model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
Block (BasicBlock|BottleneckBlock): block module of model.
depth (int): layers of resnet, default: 50.
num_classes (int): output dim of last fc layer, default: 1000.
"""
def __init__(self, Block, depth=50, num_classes=1000):
super(ResNet, self).__init__()
layer_config = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
......@@ -111,8 +181,9 @@ class ResNet(Model):
layer_config.keys(), depth)
layers = layer_config[depth]
num_in = [64, 256, 512, 1024]
num_out = [64, 128, 256, 512]
in_channels = 64
out_channels = [64, 128, 256, 512]
self.conv = ConvBNLayer(
num_channels=3,
......@@ -128,9 +199,11 @@ class ResNet(Model):
blocks = []
shortcut = False
for b in range(num_blocks):
if b == 1:
in_channels = out_channels[idx] * Block.expansion
block = Block(
num_channels=num_in[idx] if b == 0 else num_out[idx] * 4,
num_filters=num_out[idx],
num_channels=in_channels,
num_filters=out_channels[idx],
stride=2 if b == 0 and idx != 0 else 1,
shortcut=shortcut)
blocks.append(block)
......@@ -142,8 +215,8 @@ class ResNet(Model):
self.global_pool = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.fc_input_dim = num_out[-1] * 4 * 1 * 1
stdv = 1.0 / math.sqrt(out_channels[-1] * Block.expansion * 1.0)
self.fc_input_dim = out_channels[-1] * Block.expansion * 1 * 1
self.fc = Linear(
self.fc_input_dim,
num_classes,
......@@ -175,13 +248,46 @@ def _resnet(arch, Block, depth, pretrained):
return model
def resnet18(pretrained=False):
"""ResNet 18-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet18', BasicBlock, 18, pretrained)
def resnet34(pretrained=False):
"""ResNet 34-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet34', BasicBlock, 34, pretrained)
def resnet50(pretrained=False):
"""ResNet 50-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet50', BottleneckBlock, 50, pretrained)
def resnet101(pretrained=False):
"""ResNet 101-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet101', BottleneckBlock, 101, pretrained)
def resnet152(pretrained=False):
"""ResNet 152-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet152', BottleneckBlock, 152, pretrained)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.container import Sequential
from model import Model
from .download import get_weights_path
__all__ = [
'VGG',
'vgg11',
'vgg11_bn',
'vgg13',
'vgg13_bn',
'vgg16',
'vgg16_bn',
'vgg19_bn',
'vgg19',
]
model_urls = {
'vgg16': ('https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams',
'c788f453a3b999063e8da043456281ee')
}
class Classifier(fluid.dygraph.Layer):
def __init__(self, num_classes):
super(Classifier, self).__init__()
self.linear1 = Linear(512 * 7 * 7, 4096)
self.linear2 = Linear(4096, 4096)
self.linear3 = Linear(4096, num_classes, act='softmax')
def forward(self, x):
x = self.linear1(x)
x = fluid.layers.relu(x)
x = fluid.layers.dropout(x, 0.5)
x = self.linear2(x)
x = fluid.layers.relu(x)
x = fluid.layers.dropout(x, 0.5)
out = self.linear3(x)
return out
class VGG(Model):
"""VGG model from
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
Args:
features (fluid.dygraph.Layer): vgg features create by function make_layers.
num_classes (int): output dim of last fc layer. Default: 1000.
"""
def __init__(self, features, num_classes=1000):
super(VGG, self).__init__()
self.features = features
classifier = Classifier(num_classes)
self.classifier = self.add_sublayer("classifier",
Sequential(classifier))
def forward(self, x):
x = self.features(x)
x = fluid.layers.flatten(x, 1)
x = self.classifier(x)
return x
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [Pool2D(pool_size=2, pool_stride=2)]
else:
if batch_norm:
conv2d = Conv2D(in_channels, v, filter_size=3, padding=1)
layers += [conv2d, BatchNorm(v, act='relu')]
else:
conv2d = Conv2D(
in_channels, v, filter_size=3, padding=1, act='relu')
layers += [conv2d]
in_channels = v
return Sequential(*layers)
cfgs = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B':
[64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [
64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M',
512, 512, 512, 'M'
],
'E': [
64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512,
512, 'M', 512, 512, 512, 512, 'M'
],
}
def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path(model_urls[arch][0],
model_urls[arch][1])
assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams"
model.load(weight_path[:-9])
return model
def vgg11(pretrained=False, **kwargs):
"""VGG 11-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _vgg('vgg11', 'A', False, pretrained, **kwargs)
def vgg11_bn(pretrained=False, **kwargs):
"""VGG 11-layer model with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _vgg('vgg11_bn', 'A', True, pretrained, **kwargs)
def vgg13(pretrained=False, **kwargs):
"""VGG 13-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _vgg('vgg13', 'B', False, pretrained, **kwargs)
def vgg13_bn(pretrained=False, **kwargs):
"""VGG 13-layer model with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _vgg('vgg13_bn', 'B', True, pretrained, **kwargs)
def vgg16(pretrained=False, **kwargs):
"""VGG 16-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _vgg('vgg16', 'D', False, pretrained, **kwargs)
def vgg16_bn(pretrained=False, **kwargs):
"""VGG 16-layer with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _vgg('vgg16_bn', 'D', True, pretrained, **kwargs)
def vgg19(pretrained=False, **kwargs):
"""VGG 19-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _vgg('vgg19', 'E', False, pretrained, **kwargs)
def vgg19_bn(pretrained=False, **kwargs):
"""VGG 19-layer model with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _vgg('vgg19_bn', 'E', True, pretrained, **kwargs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册