Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
8640630b
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8640630b
编写于
3月 18, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
suport multiple gpus
上级
71075698
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
64 addition
and
13 deletion
+64
-13
model.py
model.py
+64
-13
未找到文件。
model.py
浏览文件 @
8640630b
...
@@ -17,15 +17,18 @@ from __future__ import absolute_import
...
@@ -17,15 +17,18 @@ from __future__ import absolute_import
import
inspect
import
inspect
import
os
import
os
import
pickle
import
pickle
from
collections
import
OrderedDict
import
numpy
as
np
import
numpy
as
np
from
collections
import
OrderedDict
from
paddle
import
fluid
from
paddle
import
fluid
from
paddle.fluid.framework
import
in_dygraph_mode
,
Variable
from
paddle.fluid.framework
import
in_dygraph_mode
,
Variable
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.io
import
is_belong_to_optimizer
from
paddle.fluid.io
import
is_belong_to_optimizer
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.incubate.fleet.collective
import
fleet
,
DistributedStrategy
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
import
distributed
__all__
=
[
'shape_hints'
,
'Model'
,
'Loss'
,
'CrossEntropy'
]
__all__
=
[
'shape_hints'
,
'Model'
,
'Loss'
,
'CrossEntropy'
]
...
@@ -124,6 +127,9 @@ class StaticGraphAdapter(object):
...
@@ -124,6 +127,9 @@ class StaticGraphAdapter(object):
self
.
_lazy_load_optimizer
=
None
self
.
_lazy_load_optimizer
=
None
self
.
_nranks
=
distributed
.
Env
().
nranks
self
.
_local_rank
=
distributed
.
Env
().
local_rank
# parse shape hints
# parse shape hints
self
.
_input_desc
=
OrderedDict
([
self
.
_input_desc
=
OrderedDict
([
(
n
,
None
)
for
n
in
extract_args
(
self
.
model
.
forward
)
if
n
!=
'self'
(
n
,
None
)
for
n
in
extract_args
(
self
.
model
.
forward
)
if
n
!=
'self'
...
@@ -279,13 +285,15 @@ class StaticGraphAdapter(object):
...
@@ -279,13 +285,15 @@ class StaticGraphAdapter(object):
endpoints
=
self
.
_endpoints
[
self
.
mode
]
endpoints
=
self
.
_endpoints
[
self
.
mode
]
fetch_list
=
endpoints
[
'output'
]
+
endpoints
[
'loss'
]
fetch_list
=
endpoints
[
'output'
]
+
endpoints
[
'loss'
]
num_output
=
len
(
endpoints
[
'output'
])
num_output
=
len
(
endpoints
[
'output'
])
if
self
.
mode
!=
'test'
:
fetch_list
+=
endpoints
[
'label'
]
out
=
self
.
_executor
.
run
(
out
=
self
.
_executor
.
run
(
compiled_prog
,
feed
=
feed
,
compiled_prog
,
feed
=
feed
,
fetch_list
=
fetch_list
)
fetch_list
=
fetch_list
)
if
self
.
mode
==
'test'
:
if
self
.
mode
==
'test'
:
return
out
[:
num_output
]
return
out
[:
num_output
]
else
:
else
:
return
out
[:
num_output
],
out
[
num_output
:]
return
out
[:
num_output
],
out
[
num_output
:
-
1
],
out
[
-
1
:
]
def
_make_program
(
self
,
inputs
):
def
_make_program
(
self
,
inputs
):
prog
=
self
.
_orig_prog
.
clone
()
prog
=
self
.
_orig_prog
.
clone
()
...
@@ -293,6 +301,7 @@ class StaticGraphAdapter(object):
...
@@ -293,6 +301,7 @@ class StaticGraphAdapter(object):
# HACK workaround learning rate map issue
# HACK workaround learning rate map issue
lr_var
=
self
.
model
.
_optimizer
.
_learning_rate_map
[
self
.
_orig_prog
]
lr_var
=
self
.
model
.
_optimizer
.
_learning_rate_map
[
self
.
_orig_prog
]
self
.
model
.
_optimizer
.
_learning_rate_map
[
prog
]
=
lr_var
self
.
model
.
_optimizer
.
_learning_rate_map
[
prog
]
=
lr_var
losses
=
[]
losses
=
[]
with
fluid
.
program_guard
(
prog
,
self
.
_startup_prog
):
with
fluid
.
program_guard
(
prog
,
self
.
_startup_prog
):
outputs
=
to_list
(
self
.
model
.
forward
(
*
inputs
))
outputs
=
to_list
(
self
.
model
.
forward
(
*
inputs
))
...
@@ -302,13 +311,27 @@ class StaticGraphAdapter(object):
...
@@ -302,13 +311,27 @@ class StaticGraphAdapter(object):
losses
=
self
.
model
.
_loss_function
(
outputs
,
label_vars
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
label_vars
)
if
self
.
mode
==
'train'
:
if
self
.
mode
==
'train'
:
self
.
_loss_endpoint
=
fluid
.
layers
.
sum
(
losses
)
self
.
_loss_endpoint
=
fluid
.
layers
.
sum
(
losses
)
if
self
.
_nranks
>
1
:
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
dist_strategy
=
DistributedStrategy
()
dist_strategy
.
mode
=
"collective"
dist_strategy
.
collective_mode
=
"grad_allreduce"
self
.
model
.
_optimizer
=
fleet
.
distributed_optimizer
(
self
.
model
.
_optimizer
,
strategy
=
dist_strategy
)
self
.
model
.
_optimizer
.
minimize
(
self
.
_loss_endpoint
)
self
.
model
.
_optimizer
.
minimize
(
self
.
_loss_endpoint
)
if
self
.
mode
!=
'train'
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
outputs
]
if
self
.
mode
!=
'test'
:
label_vars
=
[
distributed
.
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
label_vars
]
if
self
.
mode
!=
'train'
:
# clone again to put it in test mode
if
self
.
mode
!=
'train'
:
# clone again to put it in test mode
prog
=
prog
.
clone
(
for_test
=
True
)
prog
=
prog
.
clone
(
for_test
=
True
)
self
.
_progs
[
self
.
mode
]
=
prog
self
.
_progs
[
self
.
mode
]
=
prog
self
.
_endpoints
[
self
.
mode
]
=
{
self
.
_endpoints
[
self
.
mode
]
=
{
"output"
:
outputs
,
"output"
:
outputs
,
"loss"
:
losses
"loss"
:
losses
,
"label"
:
label_vars
}
}
def
_infer_input_vars
(
self
,
inputs
):
def
_infer_input_vars
(
self
,
inputs
):
...
@@ -346,7 +369,12 @@ class StaticGraphAdapter(object):
...
@@ -346,7 +369,12 @@ class StaticGraphAdapter(object):
# even if `forward()` may run different code path for different mode
# even if `forward()` may run different code path for different mode
# therefore startup program only needs to run once
# therefore startup program only needs to run once
if
self
.
_executor
is
None
:
if
self
.
_executor
is
None
:
self
.
_executor
=
fluid
.
Executor
(
places
[
0
])
if
self
.
_nranks
>
1
and
device
.
lower
()
==
'gpu'
:
gpu_id
=
int
(
os
.
environ
.
get
(
'FLAGS_selected_gpus'
,
0
))
place
=
fluid
.
CUDAPlace
(
gpu_id
)
if
device
.
lower
()
==
'gpu'
else
fluid
.
CPUPlace
()
else
:
place
=
places
[
0
]
self
.
_executor
=
fluid
.
Executor
(
place
)
# XXX incremental initialization
# XXX incremental initialization
uninitialized
=
[]
uninitialized
=
[]
for
var_py
in
self
.
_startup_prog
.
list_vars
():
for
var_py
in
self
.
_startup_prog
.
list_vars
():
...
@@ -362,7 +390,10 @@ class StaticGraphAdapter(object):
...
@@ -362,7 +390,10 @@ class StaticGraphAdapter(object):
self
.
_load_optimizer
(
self
.
_lazy_load_optimizer
)
self
.
_load_optimizer
(
self
.
_lazy_load_optimizer
)
self
.
_lazy_load_optimizer
=
None
self
.
_lazy_load_optimizer
=
None
compiled_prog
=
fluid
.
CompiledProgram
(
prog
)
if
self
.
_nranks
<
2
:
compiled_prog
=
fluid
.
CompiledProgram
(
prog
)
else
:
compiled_prog
=
prog
#fleet.main_program
if
len
(
device_ids
)
>
1
:
if
len
(
device_ids
)
>
1
:
loss_name
=
None
loss_name
=
None
if
self
.
mode
==
'train'
and
self
.
_loss_endpoint
is
not
None
:
if
self
.
mode
==
'train'
and
self
.
_loss_endpoint
is
not
None
:
...
@@ -389,6 +420,11 @@ class DynamicGraphAdapter(object):
...
@@ -389,6 +420,11 @@ class DynamicGraphAdapter(object):
def
__init__
(
self
,
model
):
def
__init__
(
self
,
model
):
super
(
DynamicGraphAdapter
,
self
).
__init__
()
super
(
DynamicGraphAdapter
,
self
).
__init__
()
self
.
model
=
model
self
.
model
=
model
self
.
_nranks
=
distributed
.
Env
().
nranks
self
.
_local_rank
=
distributed
.
Env
().
local_rank
if
self
.
_nranks
>
1
:
self
.
ddp_model
=
distributed
.
DistributedDataParallel
(
self
.
model
)
@
property
@
property
def
mode
(
self
):
def
mode
(
self
):
...
@@ -406,14 +442,22 @@ class DynamicGraphAdapter(object):
...
@@ -406,14 +442,22 @@ class DynamicGraphAdapter(object):
self
.
mode
=
'train'
self
.
mode
=
'train'
inputs
=
to_list
(
inputs
)
inputs
=
to_list
(
inputs
)
labels
=
to_list
(
labels
)
labels
=
to_list
(
labels
)
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
if
self
.
_nranks
>
1
:
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
outputs
=
self
.
ddp_model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
final_loss
=
fluid
.
layers
.
sum
(
losses
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
final_loss
.
backward
()
final_loss
=
fluid
.
layers
.
sum
(
losses
)
final_loss
=
self
.
ddp_model
.
scale_loss
(
final_loss
)
final_loss
.
backward
()
self
.
ddp_model
.
apply_collective_grads
()
else
:
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
final_loss
=
fluid
.
layers
.
sum
(
losses
)
final_loss
.
backward
()
self
.
model
.
_optimizer
.
minimize
(
final_loss
)
self
.
model
.
_optimizer
.
minimize
(
final_loss
)
self
.
model
.
clear_gradients
()
self
.
model
.
clear_gradients
()
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
\
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
\
[
to_numpy
(
l
)
for
l
in
losses
]
[
to_numpy
(
l
)
for
l
in
losses
]
,
[
l
for
l
in
labels
]
def
eval
(
self
,
inputs
,
labels
,
device
=
'CPU'
,
device_ids
=
None
):
def
eval
(
self
,
inputs
,
labels
,
device
=
'CPU'
,
device_ids
=
None
):
assert
self
.
model
.
_loss_function
,
\
assert
self
.
model
.
_loss_function
,
\
...
@@ -422,16 +466,22 @@ class DynamicGraphAdapter(object):
...
@@ -422,16 +466,22 @@ class DynamicGraphAdapter(object):
self
.
mode
=
'eval'
self
.
mode
=
'eval'
inputs
=
to_list
(
inputs
)
inputs
=
to_list
(
inputs
)
labels
=
to_list
(
labels
)
labels
=
to_list
(
labels
)
labels
=
[
to_variable
(
l
)
for
l
in
labels
]
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
if
self
.
_nranks
>
1
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
labels
=
[
distributed
.
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
\
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
\
[
to_numpy
(
l
)
for
l
in
losses
]
[
to_numpy
(
l
)
for
l
in
losses
]
,
[
to_numpy
(
l
)
for
l
in
labels
]
def
test
(
self
,
inputs
,
device
=
'CPU'
,
device_ids
=
None
):
def
test
(
self
,
inputs
,
device
=
'CPU'
,
device_ids
=
None
):
super
(
Model
,
self
.
model
).
eval
()
super
(
Model
,
self
.
model
).
eval
()
self
.
mode
=
'test'
self
.
mode
=
'test'
inputs
=
[
to_variable
(
x
)
for
x
in
to_list
(
inputs
)]
inputs
=
[
to_variable
(
x
)
for
x
in
to_list
(
inputs
)]
outputs
=
self
.
model
.
forward
(
*
inputs
)
outputs
=
self
.
model
.
forward
(
*
inputs
)
if
self
.
_nranks
>
2
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)]
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)]
def
parameters
(
self
,
*
args
,
**
kwargs
):
def
parameters
(
self
,
*
args
,
**
kwargs
):
...
@@ -476,7 +526,8 @@ class Model(fluid.dygraph.Layer):
...
@@ -476,7 +526,8 @@ class Model(fluid.dygraph.Layer):
return
self
.
_adapter
.
test
(
*
args
,
**
kwargs
)
return
self
.
_adapter
.
test
(
*
args
,
**
kwargs
)
def
save
(
self
,
*
args
,
**
kwargs
):
def
save
(
self
,
*
args
,
**
kwargs
):
return
self
.
_adapter
.
save
(
*
args
,
**
kwargs
)
if
distributed
.
get_local_rank
()
==
0
:
return
self
.
_adapter
.
save
(
*
args
,
**
kwargs
)
def
load
(
self
,
*
args
,
**
kwargs
):
def
load
(
self
,
*
args
,
**
kwargs
):
return
self
.
_adapter
.
load
(
*
args
,
**
kwargs
)
return
self
.
_adapter
.
load
(
*
args
,
**
kwargs
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录