提交 837eff99 编写于 作者: G guosheng

Rename Model.self as model in test_text.py

test=develop
上级 503d40a7
......@@ -56,13 +56,13 @@ class ModuleApiTest(unittest.TestCase):
return __impl__
@staticmethod
def model_init(self, *args, **kwargs):
def model_init(model, *args, **kwargs):
raise NotImplementedError(
"model_init acts as `Model.__init__`, thus must implement it")
@staticmethod
def model_forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
def model_forward(model, *args, **kwargs):
return model.module(*args, **kwargs)
def make_inputs(self):
# TODO(guosheng): add default from `self.inputs`
......@@ -118,7 +118,7 @@ class ModuleApiTest(unittest.TestCase):
class TestBasicLSTM(ModuleApiTest):
def setUp(self):
# TODO(guosheng): Change to big size. Currentlys bigger hidden size for
# TODO(guosheng): Change to big size. Currently bigger hidden size for
# LSTM would fail, the second static graph run might get diff output
# with others.
shape = (2, 4, 16)
......@@ -128,8 +128,8 @@ class TestBasicLSTM(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self, input_size, hidden_size):
self.lstm = RNN(
def model_init(model, input_size, hidden_size):
model.lstm = RNN(
BasicLSTMCell(
input_size,
hidden_size,
......@@ -137,8 +137,8 @@ class TestBasicLSTM(ModuleApiTest):
bias_attr=fluid.ParamAttr(name="lstm_bias")))
@staticmethod
def model_forward(self, inputs):
return self.lstm(inputs)[0]
def model_forward(model, inputs):
return model.lstm(inputs)[0]
def make_inputs(self):
inputs = [
......@@ -162,12 +162,12 @@ class TestBasicGRU(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self, input_size, hidden_size):
self.gru = RNN(BasicGRUCell(input_size, hidden_size))
def model_init(model, input_size, hidden_size):
model.gru = RNN(BasicGRUCell(input_size, hidden_size))
@staticmethod
def model_forward(self, inputs):
return self.gru(inputs)[0]
def model_forward(model, inputs):
return model.gru(inputs)[0]
def make_inputs(self):
inputs = [
......@@ -220,8 +220,8 @@ class TestBeamSearch(ModuleApiTest):
decoder, max_step_num=max_step_num, is_test=True)
@staticmethod
def model_forward(self, init_hidden, init_cell):
return self.beam_search_decoder([init_hidden, init_cell])[0]
def model_forward(model, init_hidden, init_cell):
return model.beam_search_decoder([init_hidden, init_cell])[0]
def make_inputs(self):
inputs = [
......@@ -258,7 +258,7 @@ class TestTransformerEncoder(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self,
def model_init(model,
n_layer,
n_head,
d_key,
......@@ -271,14 +271,14 @@ class TestTransformerEncoder(ModuleApiTest):
preprocess_cmd="n",
postprocess_cmd="da",
ffn_fc1_act="relu"):
self.encoder = TransformerEncoder(
model.encoder = TransformerEncoder(
n_layer, n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout, relu_dropout,
preprocess_cmd, postprocess_cmd, ffn_fc1_act)
@staticmethod
def model_forward(self, enc_input, attn_bias):
return self.encoder(enc_input, attn_bias)
def model_forward(model, enc_input, attn_bias):
return model.encoder(enc_input, attn_bias)
def make_inputs(self):
inputs = [
......@@ -321,7 +321,7 @@ class TestTransformerDecoder(TestTransformerEncoder):
self.param_states = {}
@staticmethod
def model_init(self,
def model_init(model,
n_layer,
n_head,
d_key,
......@@ -333,20 +333,20 @@ class TestTransformerDecoder(TestTransformerEncoder):
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da"):
self.decoder = TransformerDecoder(
model.decoder = TransformerDecoder(
n_layer, n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout, relu_dropout,
preprocess_cmd, postprocess_cmd)
@staticmethod
def model_forward(self,
def model_forward(model,
dec_input,
enc_output,
self_attn_bias,
cross_attn_bias,
caches=None):
return self.decoder(dec_input, enc_output, self_attn_bias,
cross_attn_bias, caches)
return model.decoder(dec_input, enc_output, self_attn_bias,
cross_attn_bias, caches)
def make_inputs(self):
inputs = [
......@@ -394,7 +394,7 @@ class TestTransformerBeamSearchDecoder(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self,
def model_init(model,
vocab_size,
n_layer,
n_head,
......@@ -411,7 +411,7 @@ class TestTransformerBeamSearchDecoder(ModuleApiTest):
eos_id=1,
beam_size=4,
max_step_num=20):
self.beam_size = beam_size
model.beam_size = beam_size
def embeder_init(self, size):
Layer.__init__(self)
......@@ -423,13 +423,13 @@ class TestTransformerBeamSearchDecoder(ModuleApiTest):
})
embedder = Embedder(size=[vocab_size, d_model])
output_layer = Linear(d_model, vocab_size)
self.decoder = TransformerDecoder(
model.decoder = TransformerDecoder(
n_layer, n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout, relu_dropout,
preprocess_cmd, postprocess_cmd)
transformer_cell = TransformerCell(self.decoder, embedder,
transformer_cell = TransformerCell(model.decoder, embedder,
output_layer)
self.beam_search_decoder = DynamicDecode(
model.beam_search_decoder = DynamicDecode(
TransformerBeamSearchDecoder(
transformer_cell,
bos_id,
......@@ -440,14 +440,14 @@ class TestTransformerBeamSearchDecoder(ModuleApiTest):
is_test=True)
@staticmethod
def model_forward(self, enc_output, trg_src_attn_bias):
caches = self.decoder.prepare_incremental_cache(enc_output)
def model_forward(model, enc_output, trg_src_attn_bias):
caches = model.decoder.prepare_incremental_cache(enc_output)
enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
enc_output, self.beam_size)
enc_output, model.beam_size)
trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
trg_src_attn_bias, self.beam_size)
static_caches = self.decoder.prepare_static_cache(enc_output)
rs, _ = self.beam_search_decoder(
trg_src_attn_bias, model.beam_size)
static_caches = model.decoder.prepare_static_cache(enc_output)
rs, _ = model.beam_search_decoder(
inits=caches,
enc_output=enc_output,
trg_src_attn_bias=trg_src_attn_bias,
......@@ -483,7 +483,7 @@ class TestSequenceTagging(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self,
def model_init(model,
vocab_size,
num_labels,
word_emb_dim=128,
......@@ -492,13 +492,13 @@ class TestSequenceTagging(ModuleApiTest):
crf_learning_rate=0.1,
bigru_num=2,
init_bound=0.1):
self.tagger = SequenceTagging(vocab_size, num_labels, word_emb_dim,
grnn_hidden_dim, emb_learning_rate,
crf_learning_rate, bigru_num, init_bound)
model.tagger = SequenceTagging(
vocab_size, num_labels, word_emb_dim, grnn_hidden_dim,
emb_learning_rate, crf_learning_rate, bigru_num, init_bound)
@staticmethod
def model_forward(self, word, lengths, target=None):
return self.tagger(word, lengths, target)
def model_forward(model, word, lengths, target=None):
return model.tagger(word, lengths, target)
def make_inputs(self):
inputs = [
......@@ -535,13 +535,13 @@ class TestStackedRNN(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self, input_size, hidden_size, num_layers):
def model_init(model, input_size, hidden_size, num_layers):
cells = [
BasicLSTMCell(input_size, hidden_size),
BasicLSTMCell(hidden_size, hidden_size)
]
stacked_cell = StackedRNNCell(cells)
self.lstm = RNN(stacked_cell)
model.lstm = RNN(stacked_cell)
@staticmethod
def model_forward(self, inputs):
......@@ -569,12 +569,12 @@ class TestLSTM(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self, input_size, hidden_size, num_layers):
self.lstm = LSTM(input_size, hidden_size, num_layers=num_layers)
def model_init(model, input_size, hidden_size, num_layers):
model.lstm = LSTM(input_size, hidden_size, num_layers=num_layers)
@staticmethod
def model_forward(self, inputs):
return self.lstm(inputs)[0]
def model_forward(model, inputs):
return model.lstm(inputs)[0]
def make_inputs(self):
inputs = [
......@@ -598,13 +598,13 @@ class TestBiLSTM(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self,
def model_init(model,
input_size,
hidden_size,
num_layers,
merge_mode="concat",
merge_each_layer=False):
self.bilstm = BidirectionalLSTM(
model.bilstm = BidirectionalLSTM(
input_size,
hidden_size,
num_layers=num_layers,
......@@ -612,8 +612,8 @@ class TestBiLSTM(ModuleApiTest):
merge_each_layer=merge_each_layer)
@staticmethod
def model_forward(self, inputs):
return self.bilstm(inputs)[0]
def model_forward(model, inputs):
return model.bilstm(inputs)[0]
def make_inputs(self):
inputs = [
......@@ -641,12 +641,12 @@ class TestGRU(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self, input_size, hidden_size, num_layers):
self.gru = GRU(input_size, hidden_size, num_layers=num_layers)
def model_init(model, input_size, hidden_size, num_layers):
model.gru = GRU(input_size, hidden_size, num_layers=num_layers)
@staticmethod
def model_forward(self, inputs):
return self.gru(inputs)[0]
def model_forward(model, inputs):
return model.gru(inputs)[0]
def make_inputs(self):
inputs = [
......@@ -670,13 +670,13 @@ class TestBiGRU(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self,
def model_init(model,
input_size,
hidden_size,
num_layers,
merge_mode="concat",
merge_each_layer=False):
self.bigru = BidirectionalGRU(
model.bigru = BidirectionalGRU(
input_size,
hidden_size,
num_layers=num_layers,
......@@ -684,8 +684,8 @@ class TestBiGRU(ModuleApiTest):
merge_each_layer=merge_each_layer)
@staticmethod
def model_forward(self, inputs):
return self.bigru(inputs)[0]
def model_forward(model, inputs):
return model.bigru(inputs)[0]
def make_inputs(self):
inputs = [
......@@ -713,8 +713,8 @@ class TestCNNEncoder(ModuleApiTest):
self.param_states = {}
@staticmethod
def model_init(self, num_channels, num_filters, num_layers):
self.cnn_encoder = CNNEncoder(
def model_init(model, num_channels, num_filters, num_layers):
model.cnn_encoder = CNNEncoder(
num_layers=2,
num_channels=num_channels,
num_filters=num_filters,
......@@ -722,8 +722,8 @@ class TestCNNEncoder(ModuleApiTest):
pool_size=[7, 6])
@staticmethod
def model_forward(self, inputs):
return self.cnn_encoder(inputs)
def model_forward(model, inputs):
return model.cnn_encoder(inputs)
def make_inputs(self):
inputs = [
......@@ -734,7 +734,7 @@ class TestCNNEncoder(ModuleApiTest):
]
return inputs
def test_check_output_merge0(self):
def test_check_output(self):
self.check_output()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册