提交 6e59472d 编写于 作者: Q qingqing01

Do not save checkpoint if not set save_dir

上级 839db7b1
......@@ -18,6 +18,7 @@ import copy
from progressbar import ProgressBar
from distributed import get_local_rank
def config_callbacks(callbacks=None,
model=None,
batch_size=None,
......@@ -26,6 +27,7 @@ def config_callbacks(callbacks=None,
log_freq=2,
verbose=2,
save_freq=1,
save_dir=None,
metrics=None,
mode='train'):
cbks = callbacks or []
......@@ -34,7 +36,7 @@ def config_callbacks(callbacks=None,
cbks = cbks + [ProgBarLogger(log_freq, verbose=verbose)]
if not any(isinstance(k, ModelCheckpoint) for k in cbks):
cbks = cbks + [ModelCheckpoint(save_freq)]
cbks = cbks + [ModelCheckpoint(save_freq, save_dir)]
cbk_list = CallbackList(cbks)
cbk_list.set_model(model)
......@@ -209,9 +211,10 @@ class ProgBarLogger(Callback):
def on_train_batch_end(self, step, logs=None):
logs = logs or {}
self.train_step = step
self.train_step += 1
if self.train_step % self.log_freq == 0 and self.verbose and get_local_rank() == 0:
if self.train_step % self.log_freq == 0 and self.verbose and get_local_rank(
) == 0:
# if steps is not None, last step will update in on_epoch_end
if self.steps and self.train_step < self.steps:
self._updates(logs, 'train')
......@@ -247,21 +250,24 @@ class ProgBarLogger(Callback):
class ModelCheckpoint(Callback):
def __init__(self, save_freq=1, save_file='output'):
def __init__(self, save_freq=1, save_dir=None):
self.save_freq = save_freq
self.save_file = save_file
self.save_dir = save_dir
def on_epoch_begin(self, epoch=None, logs=None):
self.epoch = epoch
def _is_save(self):
return self.model and self.save_dir and get_local_rank() == 0
def on_epoch_end(self, epoch, logs=None):
if self.model and self.epoch % self.save_freq == 0 and get_local_rank() == 0:
path = '{}/{}'.format(self.save_file, epoch)
if self._is_save() and self.epoch % self.save_freq == 0:
path = '{}/{}'.format(self.save_dir, epoch)
print('save checkpoint at {}'.format(path))
self.model.save(path)
def on_train_end(self, logs=None):
if self.model and get_local_rank() == 0:
path = '{}/final'.format(self.save_file)
if self._is_save():
path = '{}/final'.format(self.save_dir)
print('save checkpoint at {}'.format(path))
self.model.save(path)
......@@ -107,24 +107,26 @@ class MNIST(Model):
def main():
init_context('dynamic' if FLAGS.dynamic else 'static')
train_dataset = MnistDataset(mode='train')
val_dataset = MnistDataset(mode='test')
inputs = [Input([None, 784], 'float32', name='image')]
labels = [Input([None, 1], 'int64', name='label')]
model = MNIST()
optim = Momentum(
learning_rate=FLAGS.lr,
momentum=.9,
parameter_list=model.parameters())
learning_rate=FLAGS.lr, momentum=.9, parameter_list=model.parameters())
model.prepare(optim, CrossEntropy(), Accuracy(topk=(1, 2)), inputs, labels)
if FLAGS.resume is not None:
model.load(FLAGS.resume)
model.fit(train_dataset, val_dataset, epochs=FLAGS.epoch, batch_size=FLAGS.batch_size)
model.fit(train_dataset,
val_dataset,
epochs=FLAGS.epoch,
batch_size=FLAGS.batch_size,
save_dir='mnist_checkpoint')
if __name__ == '__main__':
......
......@@ -38,7 +38,6 @@ from paddle.fluid.io import DataLoader
from metrics import Metric
from callbacks import config_callbacks
__all__ = ['Model', 'Loss', 'CrossEntropy', 'Input']
......@@ -87,7 +86,7 @@ def extract_args(func):
def init_context(backend):
assert isinstance(backend, str) and backend.lower() in ['dynamic', 'static'], \
"Expected backend in ['dynamic', 'static'], but got {}".format(backend)
"Expected backend in ['dynamic', 'static'], but got {}".format(backend)
place = fluid.CUDAPlace(distributed.Env().dev_id) if \
distributed.Env().nranks > 1 else fluid.CUDAPlace(0)
......@@ -155,9 +154,13 @@ class StaticGraphAdapter(object):
self._progs = {}
self._compiled_progs = {}
self._merge_count = {'eval_total': 0, 'test_total': 0,
'eval_batch': 0, 'test_batch': 0}
self._merge_count = {
'eval_total': 0,
'test_total': 0,
'eval_batch': 0,
'test_batch': 0
}
self._nranks = distributed.Env().nranks
self._local_rank = distributed.Env().local_rank
......@@ -370,9 +373,12 @@ class StaticGraphAdapter(object):
samples = state[0].shape[0]
current_count = self._merge_count.get(self.mode + '_total', 0)
if current_count + samples >= total_size:
state = [s[:total_size - current_count, ...] for s in state]
state = [
s[:total_size - current_count, ...] for s in state
]
self._merge_count[self.mode + '_total'] = 0
self._merge_count[self.mode + '_batch'] = total_size - current_count
self._merge_count[self.mode +
'_batch'] = total_size - current_count
else:
self._merge_count[self.mode + '_total'] += samples
self._merge_count[self.mode + '_batch'] = samples
......@@ -405,7 +411,7 @@ class StaticGraphAdapter(object):
# HACK workaround learning rate map issue
lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
self.model._optimizer._learning_rate_map[prog] = lr_var
losses = []
metrics = []
with fluid.program_guard(prog, self._startup_prog):
......@@ -421,16 +427,22 @@ class StaticGraphAdapter(object):
outputs = to_list(self.model.forward(*inputs))
if mode != 'test' and self.model._loss_function:
losses = self.model._loss_function(outputs, labels)
losses = self.model._loss_function(outputs, labels)
if self._nranks > 1 and mode != 'train':
outputs = [distributed._all_gather(o, self._nranks) for o in outputs]
outputs = [
distributed._all_gather(o, self._nranks) for o in outputs
]
if mode != 'test':
labels = [distributed._all_gather(l, self._nranks) for l in labels]
labels = [
distributed._all_gather(l, self._nranks)
for l in labels
]
if mode != 'test':
for metric in self.model._metrics:
metrics.append(to_list(metric.add_metric_op(outputs, labels)))
metrics.append(
to_list(metric.add_metric_op(outputs, labels)))
if mode == 'train' and self.model._optimizer:
self._loss_endpoint = fluid.layers.sum(losses)
......@@ -440,16 +452,16 @@ class StaticGraphAdapter(object):
dist_strategy = DistributedStrategy()
dist_strategy.mode = "collective"
dist_strategy.collective_mode = "grad_allreduce"
self.model._optimizer = fleet.distributed_optimizer(self.model._optimizer,
strategy=dist_strategy)
self.model._optimizer = fleet.distributed_optimizer(
self.model._optimizer, strategy=dist_strategy)
self.model._optimizer.minimize(self._loss_endpoint)
if mode != 'train': # clone again to put it in test mode
prog = prog.clone(for_test=True)
self._input_vars[mode] = inputs
self._progs[mode] = prog
self._endpoints[mode] = {
"output": outputs,
......@@ -457,7 +469,6 @@ class StaticGraphAdapter(object):
"metric": metrics
}
def _compile_and_initialize(self, prog, mode):
compiled_prog = self._compiled_progs.get(mode, None)
if compiled_prog is not None:
......@@ -477,7 +488,8 @@ class StaticGraphAdapter(object):
if self._executor is None:
if self._nranks > 1 and device.lower() == 'gpu':
gpu_id = int(distributed.Env().dev_id)
place = fluid.CUDAPlace(gpu_id) if device.lower() == 'gpu' else fluid.CPUPlace()
place = fluid.CUDAPlace(gpu_id) if device.lower(
) == 'gpu' else fluid.CPUPlace()
else:
place = places[0]
self._executor = fluid.Executor(place)
......@@ -497,7 +509,7 @@ class StaticGraphAdapter(object):
if self._nranks < 2:
compiled_prog = fluid.CompiledProgram(prog)
else:
compiled_prog = prog#fleet.main_program
compiled_prog = prog #fleet.main_program
if len(places) > 1:
loss_name = None
......@@ -514,8 +526,12 @@ class DynamicGraphAdapter(object):
self.model = model
self._nranks = distributed.Env().nranks
self._local_rank = distributed.Env().local_rank
self._merge_count = {'eval_total': 0, 'test_total': 0,
'eval_batch': 0, 'test_batch': 0}
self._merge_count = {
'eval_total': 0,
'test_total': 0,
'eval_batch': 0,
'test_batch': 0
}
if self._nranks > 1:
self.ddp_model = distributed.DistributedDataParallel(self.model)
......@@ -554,7 +570,8 @@ class DynamicGraphAdapter(object):
self.model.clear_gradients()
metrics = []
for metric in self.model._metrics:
metric_outs = metric.add_metric_op(to_list(outputs), to_list(labels))
metric_outs = metric.add_metric_op(
to_list(outputs), to_list(labels))
m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
metrics.append(m)
......@@ -573,7 +590,10 @@ class DynamicGraphAdapter(object):
else:
losses = []
if self._nranks > 1:
outputs = [distributed._all_gather(o, self._nranks) for o in to_list(outputs)]
outputs = [
distributed._all_gather(o, self._nranks)
for o in to_list(outputs)
]
labels = [distributed._all_gather(l, self._nranks) for l in labels]
metrics = []
for metric in self.model._metrics:
......@@ -584,15 +604,17 @@ class DynamicGraphAdapter(object):
samples = outputs[0].shape[0]
current_count = self._merge_count.get(self.mode + '_total', 0)
if current_count + samples >= total_size:
outputs = [o[:total_size - metric.count[0]] for o in outputs]
outputs = [
o[:total_size - metric.count[0]] for o in outputs
]
labels = [l[:total_size - metric.count[0]] for l in labels]
self._merge_count[self.mode + '_total'] = 0
self._merge_count[self.mode + '_batch'] = total_size - current_count
self._merge_count[self.mode +
'_batch'] = total_size - current_count
else:
self._merge_count[self.mode + '_total'] += samples
self._merge_count[self.mode + '_batch'] = samples
metric_outs = metric.add_metric_op(to_list(outputs), labels)
m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
metrics.append(m)
......@@ -608,7 +630,10 @@ class DynamicGraphAdapter(object):
inputs = [to_variable(x) for x in to_list(inputs)]
outputs = self.model.forward(*inputs)
if self._nranks > 2:
outputs = [distributed._all_gather(o, self._nranks) for o in to_list(outputs)]
outputs = [
distributed._all_gather(o, self._nranks)
for o in to_list(outputs)
]
return [to_numpy(o) for o in to_list(outputs)]
def parameters(self, *args, **kwargs):
......@@ -829,7 +854,7 @@ class Model(fluid.dygraph.Layer):
the variable to the environment variable and set its value to 1.
The default is None.
"""
self._optimizer = optimizer
if loss_function:
if not isinstance(loss_function, Loss):
......@@ -852,7 +877,7 @@ class Model(fluid.dygraph.Layer):
self._inputs = inputs
self._labels = labels
self._device = device
if device is None:
self._device = 'GPU' if fluid.is_compiled_with_cuda() else 'CPU'
self._device_ids = device_ids
......@@ -869,6 +894,7 @@ class Model(fluid.dygraph.Layer):
epochs=1,
eval_freq=1,
log_freq=10,
save_dir=None,
save_freq=1,
verbose=2,
drop_last=False,
......@@ -878,17 +904,22 @@ class Model(fluid.dygraph.Layer):
"""
FIXME: add more comments and usage
Args:
train_loader (DataLoader): an iterable data loader is used for train.
eval_loader (DataLoader): an iterable data loader is used for
train_loader (DataLoader): An iterable data loader is used for train.
eval_loader (DataLoader): An iterable data loader is used for
evaluation at the end of epoch. If None, will not do evaluation.
epochs (int): number of epochs to train the model.
eval_freq (int): evaluation frequency in epoch.
log_freq (int): frequency to print log during training.
save_freq (int): frequency to save checkpoint during training.
verbose (int): verbosity mode, should be 0, 1, or 2.
epochs (int): Integer number. The number of epochs to train the model.
eval_freq (int): The frequency, in number of epochs, an evalutation
is performed.
log_freq (int): The frequency, in number of steps, the training logs
is printed.
save_dir(str|None): The directory to save checkpoint during training.
If None, will not save checkpoint.
save_freq (int): The frequency, in number of epochs, to save checkpoint.
verbose (int): The verbosity mode, should be 0, 1, or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch.
callbacks (Callback|None): list of `Callback` instances to apply
during training.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted.
"""
assert train_dataset is not None or train_loader is not None, \
......@@ -904,37 +935,42 @@ class Model(fluid.dygraph.Layer):
feed_list = [x.forward() for x in self._inputs + self._labels]
if train_loader is None:
train_sampler = DistributedBatchSampler(train_dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last)
train_loader = DataLoader(train_dataset,
batch_sampler=train_sampler,
places=self._place,
feed_list=feed_list,
num_workers=num_workers,
return_list=True)
train_sampler = DistributedBatchSampler(
train_dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last)
train_loader = DataLoader(
train_dataset,
batch_sampler=train_sampler,
places=self._place,
feed_list=feed_list,
num_workers=num_workers,
return_list=True)
if eval_loader is None and eval_dataset is not None:
eval_sampler = DistributedBatchSampler(eval_dataset,
batch_size=batch_size)
eval_loader = DataLoader(eval_dataset,
batch_sampler=eval_sampler,
places=self._place,
feed_list=feed_list,
num_workers=num_workers,
return_list=True)
eval_sampler = DistributedBatchSampler(
eval_dataset, batch_size=batch_size)
eval_loader = DataLoader(
eval_dataset,
batch_sampler=eval_sampler,
places=self._place,
feed_list=feed_list,
num_workers=num_workers,
return_list=True)
do_eval = eval_loader is not None
self._test_dataloader = eval_loader
metrics_name = self._metrics_name()
steps = len(train_loader) if hasattr(train_loader, '__len__') else None
cbks = config_callbacks(
callbacks,
model=self,
epochs=epochs,
steps=None,
steps=steps,
log_freq=log_freq,
save_freq=save_freq,
save_dir=save_dir,
verbose=verbose,
metrics=self._metrics_name(), )
......@@ -965,16 +1001,18 @@ class Model(fluid.dygraph.Layer):
for metric in self._metrics:
res = metric.accumulate()
metrics.extend(to_list(res))
assert len(metrics_name) == len(metrics)
for k, v in zip(metrics_name, metrics):
logs[k] = v
logs['step'] = step
if mode == 'train' or self._adapter._merge_count.get(mode + '_batch', 0) <= 0:
if mode == 'train' or self._adapter._merge_count.get(
mode + '_batch', 0) <= 0:
logs['batch_size'] = batch_size * distributed.Env().nranks
else:
logs['batch_size'] = self._adapter._merge_count[mode + '_batch']
logs['batch_size'] = self._adapter._merge_count[mode +
'_batch']
cbks.on_batch_end(mode, step, logs)
self._reset_metrics()
......
......@@ -151,16 +151,18 @@ class TestModel(unittest.TestCase):
train_dataset = MnistDataset(mode='train')
val_dataset = MnistDataset(mode='test')
model = MNIST() if not is_mlp else MLP()
optim = fluid.optimizer.Momentum(
learning_rate=0.01,
momentum=.9,
parameter_list=model.parameters())
learning_rate=0.01, momentum=.9, parameter_list=model.parameters())
loss = CrossEntropy() if not is_mlp else MyCrossEntropy()
model.prepare(optim, loss, Accuracy(), inputs, labels)
cbk = ProgBarLogger(50)
model.fit(train_dataset, val_dataset, epochs=2, batch_size=batch_size, callbacks=cbk)
model.fit(train_dataset,
val_dataset,
epochs=2,
batch_size=batch_size,
callbacks=cbk)
def test_fit_static(self):
self.fit(False)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册