Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
4bccb6aa
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4bccb6aa
编写于
3月 24, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove init context
上级
280dd0e3
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
59 addition
and
222 deletion
+59
-222
callbacks.py
callbacks.py
+8
-8
distributed.py
distributed.py
+10
-177
model.py
model.py
+39
-35
tests/test_model.py
tests/test_model.py
+2
-2
未找到文件。
callbacks.py
浏览文件 @
4bccb6aa
...
@@ -16,7 +16,7 @@ import six
...
@@ -16,7 +16,7 @@ import six
import
copy
import
copy
from
progressbar
import
ProgressBar
from
progressbar
import
ProgressBar
from
distributed
import
get_local_rank
from
paddle.fluid.dygraph.parallel
import
Env
def
config_callbacks
(
callbacks
=
None
,
def
config_callbacks
(
callbacks
=
None
,
model
=
None
,
model
=
None
,
...
@@ -193,7 +193,7 @@ class ProgBarLogger(Callback):
...
@@ -193,7 +193,7 @@ class ProgBarLogger(Callback):
self
.
steps
=
self
.
params
[
'steps'
]
self
.
steps
=
self
.
params
[
'steps'
]
self
.
epoch
=
epoch
self
.
epoch
=
epoch
self
.
train_step
=
0
self
.
train_step
=
0
if
self
.
verbose
and
self
.
epochs
and
get_local_rank
()
==
0
:
if
self
.
verbose
and
self
.
epochs
and
Env
().
local_rank
==
0
:
print
(
'Epoch %d/%d'
%
(
epoch
+
1
,
self
.
epochs
))
print
(
'Epoch %d/%d'
%
(
epoch
+
1
,
self
.
epochs
))
self
.
train_progbar
=
ProgressBar
(
num
=
self
.
steps
,
verbose
=
self
.
verbose
)
self
.
train_progbar
=
ProgressBar
(
num
=
self
.
steps
,
verbose
=
self
.
verbose
)
...
@@ -211,7 +211,7 @@ class ProgBarLogger(Callback):
...
@@ -211,7 +211,7 @@ class ProgBarLogger(Callback):
logs
=
logs
or
{}
logs
=
logs
or
{}
self
.
train_step
=
step
self
.
train_step
=
step
if
self
.
train_step
%
self
.
log_freq
==
0
and
self
.
verbose
and
get_local_rank
()
==
0
:
if
self
.
train_step
%
self
.
log_freq
==
0
and
self
.
verbose
and
Env
().
local_rank
==
0
:
# if steps is not None, last step will update in on_epoch_end
# if steps is not None, last step will update in on_epoch_end
if
self
.
steps
and
self
.
train_step
<
self
.
steps
:
if
self
.
steps
and
self
.
train_step
<
self
.
steps
:
self
.
_updates
(
logs
,
'train'
)
self
.
_updates
(
logs
,
'train'
)
...
@@ -220,7 +220,7 @@ class ProgBarLogger(Callback):
...
@@ -220,7 +220,7 @@ class ProgBarLogger(Callback):
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
logs
=
logs
or
{}
logs
=
logs
or
{}
if
self
.
verbose
and
get_local_rank
()
==
0
:
if
self
.
verbose
and
Env
().
local_rank
==
0
:
self
.
_updates
(
logs
,
'train'
)
self
.
_updates
(
logs
,
'train'
)
def
on_eval_begin
(
self
,
logs
=
None
):
def
on_eval_begin
(
self
,
logs
=
None
):
...
@@ -230,7 +230,7 @@ class ProgBarLogger(Callback):
...
@@ -230,7 +230,7 @@ class ProgBarLogger(Callback):
self
.
evaled_samples
=
0
self
.
evaled_samples
=
0
self
.
eval_progbar
=
ProgressBar
(
self
.
eval_progbar
=
ProgressBar
(
num
=
self
.
eval_steps
,
verbose
=
self
.
verbose
)
num
=
self
.
eval_steps
,
verbose
=
self
.
verbose
)
if
get_local_rank
()
==
0
:
if
Env
().
local_rank
==
0
:
print
(
'Eval begin...'
)
print
(
'Eval begin...'
)
def
on_eval_batch_end
(
self
,
step
,
logs
=
None
):
def
on_eval_batch_end
(
self
,
step
,
logs
=
None
):
...
@@ -241,7 +241,7 @@ class ProgBarLogger(Callback):
...
@@ -241,7 +241,7 @@ class ProgBarLogger(Callback):
def
on_eval_end
(
self
,
logs
=
None
):
def
on_eval_end
(
self
,
logs
=
None
):
logs
=
logs
or
{}
logs
=
logs
or
{}
if
self
.
verbose
and
get_local_rank
()
==
0
:
if
self
.
verbose
and
Env
().
local_rank
==
0
:
self
.
_updates
(
logs
,
'eval'
)
self
.
_updates
(
logs
,
'eval'
)
print
(
'Eval samples: %d'
%
(
self
.
evaled_samples
))
print
(
'Eval samples: %d'
%
(
self
.
evaled_samples
))
...
@@ -255,13 +255,13 @@ class ModelCheckpoint(Callback):
...
@@ -255,13 +255,13 @@ class ModelCheckpoint(Callback):
self
.
epoch
=
epoch
self
.
epoch
=
epoch
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
def
on_epoch_end
(
self
,
epoch
,
logs
=
None
):
if
self
.
model
and
self
.
epoch
%
self
.
save_freq
==
0
and
get_local_rank
()
==
0
:
if
self
.
model
and
self
.
epoch
%
self
.
save_freq
==
0
and
Env
().
local_rank
==
0
:
path
=
'{}/{}'
.
format
(
self
.
save_file
,
epoch
)
path
=
'{}/{}'
.
format
(
self
.
save_file
,
epoch
)
print
(
'save checkpoint at {}'
.
format
(
path
))
print
(
'save checkpoint at {}'
.
format
(
path
))
self
.
model
.
save
(
path
)
self
.
model
.
save
(
path
)
def
on_train_end
(
self
,
logs
=
None
):
def
on_train_end
(
self
,
logs
=
None
):
if
self
.
model
and
get_local_rank
()
==
0
:
if
self
.
model
and
Env
().
local_rank
==
0
:
path
=
'{}/final'
.
format
(
self
.
save_file
)
path
=
'{}/final'
.
format
(
self
.
save_file
)
print
(
'save checkpoint at {}'
.
format
(
path
))
print
(
'save checkpoint at {}'
.
format
(
path
))
self
.
model
.
save
(
path
)
self
.
model
.
save
(
path
)
distributed.py
浏览文件 @
4bccb6aa
...
@@ -17,26 +17,13 @@ import time
...
@@ -17,26 +17,13 @@ import time
import
math
import
math
import
socket
import
socket
import
contextlib
import
contextlib
from
contextlib
import
closing
from
six
import
string_types
import
numpy
as
np
import
numpy
as
np
from
collections
import
OrderedDict
from
paddle
import
fluid
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
from
paddle
.fluid
import
framework
from
paddle
import
fluid
from
paddle.fluid.layers
import
collective
from
paddle.fluid.layers
import
collective
from
paddle.fluid.dygraph
import
to_variable
,
no_grad
,
layers
from
paddle.fluid.dygraph.parallel
import
Env
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.io
import
BatchSampler
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.dygraph.parallel
import
Env
,
DataParallel
,
ParallelStrategy
from
paddle.fluid.layers.collective
import
_c_allreduce
,
_c_allgather
,
_c_broadcast
,
\
_c_sync_comm_stream
,
_c_sync_calc_stream
from
paddle.fluid.io
import
BatchSampler
,
DataLoader
__parallel_context_init
=
False
class
DistributedBatchSampler
(
BatchSampler
):
class
DistributedBatchSampler
(
BatchSampler
):
"""Sampler that restricts data loading to a subset of the dataset.
"""Sampler that restricts data loading to a subset of the dataset.
...
@@ -71,9 +58,10 @@ class DistributedBatchSampler(BatchSampler):
...
@@ -71,9 +58,10 @@ class DistributedBatchSampler(BatchSampler):
self
.
shuffle
=
shuffle
self
.
shuffle
=
shuffle
assert
isinstance
(
drop_last
,
bool
),
\
assert
isinstance
(
drop_last
,
bool
),
\
"drop_last should be a boolean number"
"drop_last should be a boolean number"
self
.
drop_last
=
drop_last
self
.
drop_last
=
drop_last
self
.
nranks
=
get_nranks
()
self
.
nranks
=
Env
().
nranks
self
.
local_rank
=
get_local_rank
()
self
.
local_rank
=
Env
().
local_rank
self
.
epoch
=
0
self
.
epoch
=
0
self
.
num_samples
=
int
(
math
.
ceil
(
len
(
self
.
dataset
)
*
1.0
/
self
.
nranks
))
self
.
num_samples
=
int
(
math
.
ceil
(
len
(
self
.
dataset
)
*
1.0
/
self
.
nranks
))
self
.
total_size
=
self
.
num_samples
*
self
.
nranks
self
.
total_size
=
self
.
num_samples
*
self
.
nranks
...
@@ -106,164 +94,9 @@ class DistributedBatchSampler(BatchSampler):
...
@@ -106,164 +94,9 @@ class DistributedBatchSampler(BatchSampler):
num_samples
+=
int
(
not
self
.
drop_last
)
*
(
self
.
batch_size
-
1
)
num_samples
+=
int
(
not
self
.
drop_last
)
*
(
self
.
batch_size
-
1
)
return
num_samples
//
self
.
batch_size
return
num_samples
//
self
.
batch_size
def
set_epoch
(
self
,
epoch
):
def
_all_gather
(
x
,
nranks
,
ring_id
=
0
,
use_calc_stream
=
True
):
self
.
epoch
=
epoch
return
_c_allgather
(
x
,
nranks
,
ring_id
=
ring_id
,
use_calc_stream
=
use_calc_stream
)
def
get_local_rank
():
return
Env
().
local_rank
def
get_nranks
():
return
Env
().
nranks
def
wait_server_ready
(
endpoints
):
assert
not
isinstance
(
endpoints
,
string_types
)
while
True
:
all_ok
=
True
not_ready_endpoints
=
[]
for
ep
in
endpoints
:
ip_port
=
ep
.
split
(
":"
)
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
sock
:
sock
.
settimeout
(
2
)
result
=
sock
.
connect_ex
((
ip_port
[
0
],
int
(
ip_port
[
1
])))
if
result
!=
0
:
all_ok
=
False
not_ready_endpoints
.
append
(
ep
)
if
not
all_ok
:
sys
.
stderr
.
write
(
"server not ready, wait 3 sec to retry...
\n
"
)
sys
.
stderr
.
write
(
"not ready endpoints:"
+
str
(
not_ready_endpoints
)
+
"
\n
"
)
sys
.
stderr
.
flush
()
time
.
sleep
(
3
)
else
:
break
def
init_communicator
(
program
,
rank
,
nranks
,
wait_port
,
current_endpoint
,
endpoints
):
if
nranks
<
2
:
return
other_endpoints
=
endpoints
[:]
other_endpoints
.
remove
(
current_endpoint
)
if
rank
==
0
and
wait_port
:
wait_server_ready
(
other_endpoints
)
block
=
program
.
global_block
()
nccl_id_var
=
block
.
create_var
(
name
=
nameGen
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
block
.
append_op
(
type
=
'c_gen_nccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
nccl_id_var
},
attrs
=
{
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
})
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
rank
,
'ring_id'
:
0
,
})
def
prepare_distributed_context
(
place
=
None
):
def
_all_gather
(
x
,
nranks
,
ring_id
=
0
,
use_calc_stream
=
True
):
if
place
is
None
:
return
collective
.
_c_allgather
(
x
,
nranks
,
ring_id
=
ring_id
,
use_calc_stream
=
use_calc_stream
)
place
=
fluid
.
CUDAPlace
(
Env
().
dev_id
)
if
Env
().
nranks
>
1
\
else
fluid
.
CUDAPlace
(
0
)
strategy
=
ParallelStrategy
()
strategy
.
nranks
=
Env
().
nranks
strategy
.
local_rank
=
Env
().
local_rank
strategy
.
trainer_endpoints
=
Env
().
trainer_endpoints
strategy
.
current_endpoint
=
Env
().
current_endpoint
if
strategy
.
nranks
<
2
:
return
global
__parallel_context_init
if
not
__parallel_context_init
and
isinstance
(
place
,
core
.
CUDAPlace
):
def
_init_context
():
communicator_prog
=
framework
.
Program
()
init_communicator
(
communicator_prog
,
strategy
.
local_rank
,
strategy
.
nranks
,
True
,
strategy
.
current_endpoint
,
strategy
.
trainer_endpoints
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
communicator_prog
)
if
fluid
.
in_dygraph_mode
():
fluid
.
disable_dygraph
()
_init_context
()
fluid
.
enable_dygraph
(
place
)
else
:
_init_context
()
else
:
assert
(
"Only support CUDAPlace for now."
)
__parallel_context_init
=
True
return
strategy
class
DistributedDataParallel
(
DataParallel
):
def
__init__
(
self
,
layers
,
strategy
=
None
):
if
strategy
is
None
:
strategy
=
ParallelStrategy
()
strategy
.
nranks
=
Env
().
nranks
strategy
.
local_rank
=
Env
().
local_rank
strategy
.
trainer_endpoints
=
Env
().
trainer_endpoints
strategy
.
current_endpoint
=
Env
().
current_endpoint
super
(
DistributedDataParallel
,
self
).
__init__
(
layers
,
strategy
)
@
no_grad
def
apply_collective_grads
(
self
):
"""
AllReduce the Parameters' gradient.
"""
if
not
self
.
_is_data_parallel_mode
():
return
grad_var_set
=
set
()
grad_vars
=
[]
for
param
in
self
.
_layers
.
parameters
():
# NOTE(zcd): The grad_ivar maybe no generated.
if
param
.
trainable
and
param
.
_grad_ivar
():
g_var
=
param
.
_grad_ivar
()
grad_vars
.
append
(
g_var
)
assert
g_var
not
in
grad_var_set
grad_var_set
.
add
(
g_var
)
mega_bytes
=
128
*
1024
*
1024
group_idx
=
0
memory_counter
=
0
grad_var_groups
=
OrderedDict
()
dtype
=
grad_vars
[
0
].
dtype
for
g_var
in
grad_vars
:
# Note: the dtype of the same group should be the same.
bytes
=
np
.
prod
(
g_var
.
shape
)
*
core
.
size_of_dtype
(
g_var
.
dtype
)
if
memory_counter
<
mega_bytes
and
dtype
==
g_var
.
dtype
:
memory_counter
+=
bytes
else
:
memory_counter
=
bytes
group_idx
+=
1
grad_var_groups
.
setdefault
(
group_idx
,
[]).
append
(
g_var
)
coalesced_grads_and_vars
=
self
.
_coalesce_tensors
(
grad_var_groups
)
for
coalesced_grad
,
_
,
_
in
coalesced_grads_and_vars
:
collective
.
_c_allreduce
(
coalesced_grad
,
coalesced_grad
,
use_calc_stream
=
True
)
self
.
_split_tensors
(
coalesced_grads_and_vars
)
model.py
浏览文件 @
4bccb6aa
...
@@ -20,27 +20,26 @@ import pickle
...
@@ -20,27 +20,26 @@ import pickle
import
numpy
as
np
import
numpy
as
np
import
six
import
six
import
warnings
import
warnings
from
collections
import
Iterable
from
collections
import
OrderedDict
from
collections
import
OrderedDict
from
collections
import
Iterable
,
OrderedDict
from
paddle
import
fluid
from
paddle
import
fluid
from
paddle.fluid.framework
import
in_dygraph_mode
,
Variable
from
paddle.fluid.framework
import
in_dygraph_mode
,
Variable
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.io
import
is_belong_to_optimizer
from
paddle.fluid.io
import
is_belong_to_optimizer
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.dygraph.parallel
import
Env
from
paddle.fluid.incubate.fleet.collective
import
fleet
,
DistributedStrategy
from
paddle.fluid.incubate.fleet.collective
import
fleet
,
DistributedStrategy
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
distributed
from
distributed
import
DistributedBatchSampler
from
paddle.fluid.io
import
DataLoader
from
paddle.fluid.io
import
DataLoader
from
distributed
import
DistributedBatchSampler
,
_all_gather
from
metrics
import
Metric
from
metrics
import
Metric
from
callbacks
import
config_callbacks
from
callbacks
import
config_callbacks
__all__
=
[
'Model'
,
'Loss'
,
'CrossEntropy'
,
'Input'
]
__all__
=
[
'Model'
,
'Loss'
,
'CrossEntropy'
,
'Input'
]
_parallel_context_inited
=
False
def
to_list
(
value
):
def
to_list
(
value
):
if
value
is
None
:
if
value
is
None
:
...
@@ -85,18 +84,6 @@ def extract_args(func):
...
@@ -85,18 +84,6 @@ def extract_args(func):
return
inspect
.
getargspec
(
func
)[
0
]
return
inspect
.
getargspec
(
func
)[
0
]
def
init_context
(
backend
):
assert
isinstance
(
backend
,
str
)
and
backend
.
lower
()
in
[
'dynamic'
,
'static'
],
\
"Expected backend in ['dynamic', 'static'], but got {}"
.
format
(
backend
)
place
=
fluid
.
CUDAPlace
(
distributed
.
Env
().
dev_id
)
if
\
distributed
.
Env
().
nranks
>
1
else
fluid
.
CUDAPlace
(
0
)
distributed
.
prepare_distributed_context
(
place
)
backend
=
backend
.
lower
()
if
backend
==
'dynamic'
:
fluid
.
enable_dygraph
(
place
)
class
Input
(
fluid
.
dygraph
.
Layer
):
class
Input
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
shape
=
None
,
dtype
=
None
,
name
=
None
):
def
__init__
(
self
,
shape
=
None
,
dtype
=
None
,
name
=
None
):
super
(
Input
,
self
).
__init__
()
super
(
Input
,
self
).
__init__
()
...
@@ -158,8 +145,8 @@ class StaticGraphAdapter(object):
...
@@ -158,8 +145,8 @@ class StaticGraphAdapter(object):
self
.
_merge_count
=
{
'eval_total'
:
0
,
'test_total'
:
0
,
self
.
_merge_count
=
{
'eval_total'
:
0
,
'test_total'
:
0
,
'eval_batch'
:
0
,
'test_batch'
:
0
}
'eval_batch'
:
0
,
'test_batch'
:
0
}
self
.
_nranks
=
distributed
.
Env
().
nranks
self
.
_nranks
=
Env
().
nranks
self
.
_local_rank
=
distributed
.
Env
().
local_rank
self
.
_local_rank
=
Env
().
local_rank
@
property
@
property
def
mode
(
self
):
def
mode
(
self
):
...
@@ -424,9 +411,9 @@ class StaticGraphAdapter(object):
...
@@ -424,9 +411,9 @@ class StaticGraphAdapter(object):
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
if
self
.
_nranks
>
1
and
mode
!=
'train'
:
if
self
.
_nranks
>
1
and
mode
!=
'train'
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
outputs
]
outputs
=
[
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
outputs
]
if
mode
!=
'test'
:
if
mode
!=
'test'
:
labels
=
[
distributed
.
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
labels
=
[
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
if
mode
!=
'test'
:
if
mode
!=
'test'
:
for
metric
in
self
.
model
.
_metrics
:
for
metric
in
self
.
model
.
_metrics
:
...
@@ -476,7 +463,7 @@ class StaticGraphAdapter(object):
...
@@ -476,7 +463,7 @@ class StaticGraphAdapter(object):
# therefore startup program only needs to run once
# therefore startup program only needs to run once
if
self
.
_executor
is
None
:
if
self
.
_executor
is
None
:
if
self
.
_nranks
>
1
and
device
.
lower
()
==
'gpu'
:
if
self
.
_nranks
>
1
and
device
.
lower
()
==
'gpu'
:
gpu_id
=
int
(
distributed
.
Env
().
dev_id
)
gpu_id
=
int
(
Env
().
dev_id
)
place
=
fluid
.
CUDAPlace
(
gpu_id
)
if
device
.
lower
()
==
'gpu'
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
gpu_id
)
if
device
.
lower
()
==
'gpu'
else
fluid
.
CPUPlace
()
else
:
else
:
place
=
places
[
0
]
place
=
places
[
0
]
...
@@ -512,13 +499,18 @@ class DynamicGraphAdapter(object):
...
@@ -512,13 +499,18 @@ class DynamicGraphAdapter(object):
def
__init__
(
self
,
model
):
def
__init__
(
self
,
model
):
super
(
DynamicGraphAdapter
,
self
).
__init__
()
super
(
DynamicGraphAdapter
,
self
).
__init__
()
self
.
model
=
model
self
.
model
=
model
self
.
_nranks
=
distributed
.
Env
().
nranks
self
.
_nranks
=
Env
().
nranks
self
.
_local_rank
=
distributed
.
Env
().
local_rank
self
.
_local_rank
=
Env
().
local_rank
self
.
_merge_count
=
{
'eval_total'
:
0
,
'test_total'
:
0
,
self
.
_merge_count
=
{
'eval_total'
:
0
,
'test_total'
:
0
,
'eval_batch'
:
0
,
'test_batch'
:
0
}
'eval_batch'
:
0
,
'test_batch'
:
0
}
if
self
.
_nranks
>
1
:
if
self
.
_nranks
>
1
:
self
.
ddp_model
=
distributed
.
DistributedDataParallel
(
self
.
model
)
stradegy
=
fluid
.
dygraph
.
parallel
.
ParallelStrategy
()
stradegy
.
nranks
=
Env
().
nranks
stradegy
.
local_rank
=
Env
().
local_rank
stradegy
.
trainer_endpoints
=
Env
().
trainer_endpoints
stradegy
.
current_endpoint
=
Env
().
current_endpoint
self
.
ddp_model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
self
.
model
,
stradegy
)
@
property
@
property
def
mode
(
self
):
def
mode
(
self
):
...
@@ -573,8 +565,8 @@ class DynamicGraphAdapter(object):
...
@@ -573,8 +565,8 @@ class DynamicGraphAdapter(object):
else
:
else
:
losses
=
[]
losses
=
[]
if
self
.
_nranks
>
1
:
if
self
.
_nranks
>
1
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
outputs
=
[
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
labels
=
[
distributed
.
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
labels
=
[
_all_gather
(
l
,
self
.
_nranks
)
for
l
in
labels
]
metrics
=
[]
metrics
=
[]
for
metric
in
self
.
model
.
_metrics
:
for
metric
in
self
.
model
.
_metrics
:
# cut off padding value.
# cut off padding value.
...
@@ -608,7 +600,7 @@ class DynamicGraphAdapter(object):
...
@@ -608,7 +600,7 @@ class DynamicGraphAdapter(object):
inputs
=
[
to_variable
(
x
)
for
x
in
to_list
(
inputs
)]
inputs
=
[
to_variable
(
x
)
for
x
in
to_list
(
inputs
)]
outputs
=
self
.
model
.
forward
(
*
inputs
)
outputs
=
self
.
model
.
forward
(
*
inputs
)
if
self
.
_nranks
>
2
:
if
self
.
_nranks
>
2
:
outputs
=
[
distributed
.
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
outputs
=
[
_all_gather
(
o
,
self
.
_nranks
)
for
o
in
to_list
(
outputs
)]
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)]
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)]
def
parameters
(
self
,
*
args
,
**
kwargs
):
def
parameters
(
self
,
*
args
,
**
kwargs
):
...
@@ -696,8 +688,20 @@ class Model(fluid.dygraph.Layer):
...
@@ -696,8 +688,20 @@ class Model(fluid.dygraph.Layer):
self
.
_test_dataloader
=
None
self
.
_test_dataloader
=
None
# init multiple gpus context
# init multiple gpus context
self
.
_place
=
fluid
.
CUDAPlace
(
distributed
.
Env
().
dev_id
)
\
self
.
_place
=
fluid
.
CUDAPlace
(
Env
().
dev_id
)
\
if
distributed
.
Env
().
nranks
>
1
else
fluid
.
CUDAPlace
(
0
)
if
Env
().
nranks
>
1
else
fluid
.
CUDAPlace
(
0
)
global
_parallel_context_inited
if
Env
().
nranks
>
1
and
not
_parallel_context_inited
:
if
fluid
.
in_dygraph_mode
():
fluid
.
disable_dygraph
()
fluid
.
enable_dygraph
(
self
.
_place
)
fluid
.
dygraph
.
parallel
.
prepare_context
()
else
:
fluid
.
enable_dygraph
(
self
.
_place
)
fluid
.
dygraph
.
parallel
.
prepare_context
()
fluid
.
disable_dygraph
()
_parallel_context_inited
=
True
# init backend
# init backend
if
fluid
.
in_dygraph_mode
():
if
fluid
.
in_dygraph_mode
():
...
@@ -715,7 +719,7 @@ class Model(fluid.dygraph.Layer):
...
@@ -715,7 +719,7 @@ class Model(fluid.dygraph.Layer):
return
self
.
_adapter
.
test
(
*
args
,
**
kwargs
)
return
self
.
_adapter
.
test
(
*
args
,
**
kwargs
)
def
save
(
self
,
*
args
,
**
kwargs
):
def
save
(
self
,
*
args
,
**
kwargs
):
if
distributed
.
get_local_rank
()
==
0
:
if
Env
().
local_rank
==
0
:
return
self
.
_adapter
.
save
(
*
args
,
**
kwargs
)
return
self
.
_adapter
.
save
(
*
args
,
**
kwargs
)
def
load
(
self
,
path
,
skip_mismatch
=
False
,
reset_optimizer
=
False
):
def
load
(
self
,
path
,
skip_mismatch
=
False
,
reset_optimizer
=
False
):
...
@@ -829,7 +833,7 @@ class Model(fluid.dygraph.Layer):
...
@@ -829,7 +833,7 @@ class Model(fluid.dygraph.Layer):
the variable to the environment variable and set its value to 1.
the variable to the environment variable and set its value to 1.
The default is None.
The default is None.
"""
"""
self
.
_optimizer
=
optimizer
self
.
_optimizer
=
optimizer
if
loss_function
:
if
loss_function
:
if
not
isinstance
(
loss_function
,
Loss
):
if
not
isinstance
(
loss_function
,
Loss
):
...
@@ -972,7 +976,7 @@ class Model(fluid.dygraph.Layer):
...
@@ -972,7 +976,7 @@ class Model(fluid.dygraph.Layer):
logs
[
'step'
]
=
step
logs
[
'step'
]
=
step
if
mode
==
'train'
or
self
.
_adapter
.
_merge_count
.
get
(
mode
+
'_batch'
,
0
)
<=
0
:
if
mode
==
'train'
or
self
.
_adapter
.
_merge_count
.
get
(
mode
+
'_batch'
,
0
)
<=
0
:
logs
[
'batch_size'
]
=
batch_size
*
distributed
.
Env
().
nranks
logs
[
'batch_size'
]
=
batch_size
*
Env
().
nranks
else
:
else
:
logs
[
'batch_size'
]
=
self
.
_adapter
.
_merge_count
[
mode
+
'_batch'
]
logs
[
'batch_size'
]
=
self
.
_adapter
.
_merge_count
[
mode
+
'_batch'
]
...
...
tests/test_model.py
浏览文件 @
4bccb6aa
...
@@ -28,7 +28,7 @@ import contextlib
...
@@ -28,7 +28,7 @@ import contextlib
import
paddle
import
paddle
from
paddle
import
fluid
from
paddle
import
fluid
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
Linear
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
Linear
from
model
import
Model
,
CrossEntropy
,
Input
,
Loss
,
init_context
from
model
import
Model
,
CrossEntropy
,
Input
,
Loss
from
metrics
import
Accuracy
from
metrics
import
Accuracy
from
callbacks
import
ProgBarLogger
from
callbacks
import
ProgBarLogger
from
paddle.fluid.io
import
BatchSampler
,
DataLoader
from
paddle.fluid.io
import
BatchSampler
,
DataLoader
...
@@ -141,7 +141,7 @@ class MyCrossEntropy(Loss):
...
@@ -141,7 +141,7 @@ class MyCrossEntropy(Loss):
class
TestModel
(
unittest
.
TestCase
):
class
TestModel
(
unittest
.
TestCase
):
def
fit
(
self
,
dynamic
,
is_mlp
=
False
):
def
fit
(
self
,
dynamic
,
is_mlp
=
False
):
init_context
(
'dynamic'
if
dynamic
else
'static'
)
fluid
.
enable_dygraph
()
if
dynamic
else
None
im_shape
=
(
-
1
,
784
)
im_shape
=
(
-
1
,
784
)
batch_size
=
128
batch_size
=
128
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录