This interface is used to construct a callable object of the ``CNNEncoder`` class.The ``CNNEncoder`` is composed of a ``Embedding`` and a ``Conv1dPoolLayer`` .
This interface is used to construct a callable object of the ``CNNEncoder`` class.The ``CNNEncoder`` is composed of a ``Embedding`` and a ``Conv1dPoolLayer`` .
For more details, refer to code examples. The ``CNNEncoder`` layer calculates the output based on the input, dict_size and emb_dim, filter_size, num_filters,
For more details, refer to code examples. The ``CNNEncoder`` layer calculates the output based on the input, dict_size and emb_dim, filter_size, num_filters,
use_cuda, is_sparse, param_attr parameters. The type of Input data is a Tensor or a lod-tensor .The data type of Input data is 'int64'. Output data are in NCH
use_cuda, is_sparse, param_attr parameters. The type of Input data is a 3-D Tensor .The data type of Input data is 'float32'. Output data are in NCH
format, where N is batch size, C is the number of the feature map, H is the height of the feature map. The data type of Output data is 'float32' or 'float64'.
format, where N is batch size, C is the number of the feature map, H is the height of the feature map. The data type of Output data is 'float32' or 'float64'.
Args:
Args:
dict_size(int): the size of the dictionary of embeddings
num_channels(int|list|tuple): The number of channels in the input data.If num_channels is a list or tuple, the length of num_channels must equal layer_num.If num_channels
emb_szie(int): the size of each embedding vector respectively.
is a int, all conv1dpoollayer's num_channels are the value of num_channels.
num_channels(int): The number of channels in the input data.Default:1
num_filters(int|list|tuple): The number of filters. It is the same as the output channels. If num_filters is a list or tuple, the length of num_filters must equal layer_num.If num_filters
num_filters(int): The number of filters. It is the same as the output channels.
is a int, all conv1dpoollayer's num_filters are the value of num_filters.
filter_size(int): The filter size of Conv1DPoolLayer in CNNEncoder.
filter_size(int|list|tuple): The filter size of Conv1DPoolLayer in CNNEncoder. If filter_size is a list or tuple, the length of filter_size must equal layer_num.If filter_size
pool_size(int): The pooling size of Conv1DPoolLayer in CNNEncoder.
is a int, all conv1dpoollayer's filter_size are the value of filter_size.
pool_size(int|list|tuple): The pooling size of Conv1DPoolLayer in CNNEncoder.If pool_size is a list or tuple, the length of pool_size must equal layer_num.If pool_size
is a int, all conv1dpoollayer's pool_size are the value of pool_size.
layer_num(int): The number of conv1dpoolLayer used in CNNEncoder.
conv_stride(int|list|tuple): The stride size of the conv Layer in Conv1DPoolLayer. If conv_stride is a list or tuple, the length of conv_stride must equal layer_num.If conv_stride
is a int, all conv1dpoollayer's conv_stride are the value of conv_stride. Default: 1
pool_stride(int|list|tuple): The stride size of the pool layer in Conv1DPoolLayer. If pool_stride is a list or tuple, the length of pool_stride must equal layer_num.If pool_stride
is a int, all conv1dpoollayer's pool_stride are the value of pool_stride. Default: 1
conv_padding(int|list|tuple): The padding size of the conv Layer in Conv1DPoolLayer.If conv_padding is a list or tuple, the length of conv_padding must equal layer_num.If conv_padding
is a int, all conv1dpoollayer's conv_padding are the value of conv_padding. Default: 0
pool_padding(int|list|tuple): The padding of pool layer in Conv1DPoolLayer. If pool_padding is a list or tuple, the length of pool_padding must equal layer_num.If pool_padding
is a int, all conv1dpoollayer's pool_padding are the value of pool_padding. Default: 0
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: False
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: False
is_sparse(bool): The flag indicating whether to use sparse update. This parameter only affects the performance of the backwards gradient update. It is recommended
act (str|list|tuple): Activation type for `Conv1dPoollayer` layer, if it is set to None, activation is not appended. Default: None.
to set True because sparse update is faster. But some optimizer does not support sparse update,such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` ,
:ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
In these case, is_sparse must be False. Default: True.
param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the default weight parameter property is used. See usage for details in
:ref:`api_fluid_ParamAttr` . In addition,user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. The local word vector
needs to be transformed into numpy format, and the shape of local word vector should be consistent with :attr:`size` .
Then :ref:`api_fluid_initializer_NumpyArrayInitializer` is used to load custom or pre-trained word vectors. Default: None.
padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted to :math:`vocab\_size + padding\_idx` . It will output all-zero padding
data whenever lookup encounters :math:`padding\_idx` in id. And the padding data will not be updated while training. If set None, it makes no effect to
output. Default: None.
act (str): Activation type for `Conv1dPoollayer` layer, if it is set to None, activation is not appended. Default: None.
Return:
Return:
3-D Tensor, the result of input after embedding and conv1dPoollayer
3-D Tensor, the result of input after embedding and conv1dPoollayer