Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
28ee9ac1
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
28ee9ac1
编写于
4月 28, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix test model
上级
46158530
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
29 addition
and
46 deletion
+29
-46
hapi/tests/test_model.py
hapi/tests/test_model.py
+29
-46
未找到文件。
hapi/tests/test_model.py
浏览文件 @
28ee9ac1
...
@@ -20,6 +20,8 @@ import unittest
...
@@ -20,6 +20,8 @@ import unittest
import
os
import
os
import
cv2
import
cv2
import
numpy
as
np
import
numpy
as
np
import
tempfile
import
shutil
import
paddle
import
paddle
from
paddle
import
fluid
from
paddle
import
fluid
...
@@ -36,14 +38,6 @@ from hapi.download import get_weights_path_from_url
...
@@ -36,14 +38,6 @@ from hapi.download import get_weights_path_from_url
class
LeNetDygraph
(
fluid
.
dygraph
.
Layer
):
class
LeNetDygraph
(
fluid
.
dygraph
.
Layer
):
"""LeNet model from
`"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_
Args:
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 10.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
"""
def
__init__
(
self
,
num_classes
=
10
,
classifier_activation
=
'softmax'
):
def
__init__
(
self
,
num_classes
=
10
,
classifier_activation
=
'softmax'
):
super
(
LeNetDygraph
,
self
).
__init__
()
super
(
LeNetDygraph
,
self
).
__init__
()
...
@@ -137,6 +131,15 @@ class TestEvaluatePredict(unittest.TestCase):
...
@@ -137,6 +131,15 @@ class TestEvaluatePredict(unittest.TestCase):
low_level_lenet_dygraph_train
(
self
.
lenet_dygraph
,
train_dataloader
)
low_level_lenet_dygraph_train
(
self
.
lenet_dygraph
,
train_dataloader
)
self
.
acc1
=
low_level_dynamic_evaluate
(
self
.
lenet_dygraph
,
self
.
acc1
=
low_level_dynamic_evaluate
(
self
.
lenet_dygraph
,
val_dataloader
)
val_dataloader
)
self
.
save_dir
=
tempfile
.
mkdtemp
()
self
.
weight_path
=
os
.
path
.
join
(
self
.
save_dir
,
'lenet'
)
fluid
.
dygraph
.
save_dygraph
(
self
.
lenet_dygraph
.
state_dict
(),
self
.
weight_path
)
fluid
.
disable_dygraph
()
def
tearDown
(
self
):
shutil
.
rmtree
(
self
.
save_dir
)
def
evaluate
(
self
,
dynamic
):
def
evaluate
(
self
,
dynamic
):
fluid
.
enable_dygraph
(
self
.
device
)
if
dynamic
else
None
fluid
.
enable_dygraph
(
self
.
device
)
if
dynamic
else
None
...
@@ -144,67 +147,44 @@ class TestEvaluatePredict(unittest.TestCase):
...
@@ -144,67 +147,44 @@ class TestEvaluatePredict(unittest.TestCase):
inputs
=
[
Input
([
-
1
,
1
,
28
,
28
],
'float32'
,
name
=
'image'
)]
inputs
=
[
Input
([
-
1
,
1
,
28
,
28
],
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
if
fluid
.
in_dygraph_mode
():
val_dataloader
=
fluid
.
io
.
DataLoader
(
feed_list
=
None
else
:
feed_list
=
[
x
.
forward
()
for
x
in
inputs
+
labels
]
self
.
train_dataloader
=
fluid
.
io
.
DataLoader
(
self
.
train_dataset
,
places
=
self
.
device
,
batch_size
=
64
,
feed_list
=
feed_list
)
self
.
val_dataloader
=
fluid
.
io
.
DataLoader
(
self
.
val_dataset
,
self
.
val_dataset
,
places
=
self
.
device
,
places
=
self
.
device
,
batch_size
=
64
,
batch_size
=
64
,
feed_list
=
feed_list
)
return_list
=
True
)
self
.
test_dataloader
=
fluid
.
io
.
DataLoader
(
self
.
test_dataset
,
places
=
self
.
device
,
batch_size
=
64
,
feed_list
=
feed_list
)
model
=
LeNet
()
model
=
LeNet
()
model
.
load_dict
(
self
.
lenet_dygraph
.
state_dict
())
model
.
load
(
self
.
weight_path
)
model
.
prepare
(
metrics
=
Accuracy
(),
inputs
=
inputs
,
labels
=
labels
)
model
.
prepare
(
metrics
=
Accuracy
(),
inputs
=
inputs
,
labels
=
labels
)
result
=
model
.
evaluate
(
self
.
val_dataloader
)
result
=
model
.
evaluate
(
val_dataloader
)
np
.
testing
.
assert_allclose
(
result
[
'acc'
],
self
.
acc1
)
np
.
testing
.
assert_allclose
(
result
[
'acc'
],
self
.
acc1
)
if
fluid
.
in_dygraph_mode
():
fluid
.
disable_dygraph
()
def
predict
(
self
,
dynamic
):
def
predict
(
self
,
dynamic
):
fluid
.
enable_dygraph
(
self
.
device
)
if
dynamic
else
None
fluid
.
enable_dygraph
(
self
.
device
)
if
dynamic
else
None
inputs
=
[
Input
([
-
1
,
1
,
28
,
28
],
'float32'
,
name
=
'image'
)]
inputs
=
[
Input
([
-
1
,
1
,
28
,
28
],
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
if
fluid
.
in_dygraph_mode
():
test_dataloader
=
fluid
.
io
.
DataLoader
(
feed_list
=
None
else
:
feed_list
=
[
x
.
forward
()
for
x
in
inputs
+
labels
]
self
.
train_dataloader
=
fluid
.
io
.
DataLoader
(
self
.
train_dataset
,
places
=
self
.
device
,
batch_size
=
64
,
feed_list
=
feed_list
)
self
.
val_dataloader
=
fluid
.
io
.
DataLoader
(
self
.
val_dataset
,
places
=
self
.
device
,
batch_size
=
64
,
feed_list
=
feed_list
)
self
.
test_dataloader
=
fluid
.
io
.
DataLoader
(
self
.
test_dataset
,
self
.
test_dataset
,
places
=
self
.
device
,
places
=
self
.
device
,
batch_size
=
64
,
batch_size
=
64
,
feed_list
=
feed_list
)
return_list
=
True
)
model
=
LeNet
()
model
=
LeNet
()
model
.
load_dict
(
self
.
lenet_dygraph
.
state_dict
())
model
.
load
(
self
.
weight_path
)
model
.
prepare
(
metrics
=
Accuracy
(),
inputs
=
inputs
,
labels
=
labels
)
model
.
prepare
(
metrics
=
Accuracy
(),
inputs
=
inputs
,
labels
=
labels
)
output
=
model
.
predict
(
self
.
test_dataloader
,
stack_outputs
=
True
)
output
=
model
.
predict
(
test_dataloader
,
stack_outputs
=
True
)
np
.
testing
.
assert_equal
(
output
[
0
].
shape
[
0
],
len
(
self
.
test_dataset
))
np
.
testing
.
assert_equal
(
output
[
0
].
shape
[
0
],
len
(
self
.
test_dataset
))
...
@@ -212,6 +192,9 @@ class TestEvaluatePredict(unittest.TestCase):
...
@@ -212,6 +192,9 @@ class TestEvaluatePredict(unittest.TestCase):
np
.
testing
.
assert_allclose
(
acc
,
self
.
acc1
)
np
.
testing
.
assert_allclose
(
acc
,
self
.
acc1
)
if
fluid
.
in_dygraph_mode
():
fluid
.
disable_dygraph
()
def
test_evaluate_dygraph
(
self
):
def
test_evaluate_dygraph
(
self
):
self
.
evaluate
(
True
)
self
.
evaluate
(
True
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录