Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
2458c1fb
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2458c1fb
编写于
4月 22, 2020
作者:
L
LielinJiang
提交者:
GitHub
4月 22, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #49 from LielinJiang/lenet
Add lenet
上级
072bedd1
f0d4938b
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
423 addition
and
234 deletion
+423
-234
examples/image_classification/README.MD
examples/image_classification/README.MD
+2
-1
examples/image_classification/imagenet_dataset.py
examples/image_classification/imagenet_dataset.py
+9
-4
examples/image_classification/main.py
examples/image_classification/main.py
+17
-4
examples/yolov3/main.py
examples/yolov3/main.py
+102
-74
examples/yolov3/modeling.py
examples/yolov3/modeling.py
+65
-41
examples/yolov3/transforms.py
examples/yolov3/transforms.py
+44
-12
hapi/datasets/folder.py
hapi/datasets/folder.py
+1
-1
hapi/model.py
hapi/model.py
+15
-6
hapi/vision/models/darknet.py
hapi/vision/models/darknet.py
+68
-50
hapi/vision/models/lenet.py
hapi/vision/models/lenet.py
+58
-0
hapi/vision/transforms/transforms.py
hapi/vision/transforms/transforms.py
+37
-37
mnist.py
mnist.py
+3
-3
tests/test_model.py
tests/test_model.py
+2
-1
未找到文件。
examples/image_classification/README.MD
浏览文件 @
2458c1fb
...
...
@@ -85,8 +85,9 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch main.py --arch
|
[
vgg16
](
https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams
)
| 71.92 | 90.65 |
|
[
mobilenet_v1
](
https://paddle-hapi.bj.bcebos.com/models/mobilenet_v1_x1.0.pdparams
)
| 71.16 | 89.89 |
|
[
mobilenet_v2
](
https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams
)
| 72.30 | 90.74 |
|
[
darknet53
](
https://paddle-hapi.bj.bcebos.com/models/darknet53.pdparams
)
| 78.43 | 94.24 |
上述
模型的复现参数请参考scripts下的脚本。
上述
部分模型的复现参数请参考scripts下的脚本。需要注意的是darknet要使用image size为256的输入来预测, 即
```--image-size 256```
## 参考文献
...
...
examples/image_classification/imagenet_dataset.py
浏览文件 @
2458c1fb
...
...
@@ -24,7 +24,11 @@ from paddle import fluid
class
ImageNetDataset
(
DatasetFolder
):
def
__init__
(
self
,
path
,
mode
=
'train'
):
def
__init__
(
self
,
path
,
mode
=
'train'
,
image_size
=
224
,
resize_short_size
=
256
):
super
(
ImageNetDataset
,
self
).
__init__
(
path
)
self
.
mode
=
mode
...
...
@@ -32,13 +36,14 @@ class ImageNetDataset(DatasetFolder):
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.120
,
57.375
])
if
self
.
mode
==
'train'
:
self
.
transform
=
transforms
.
Compose
([
transforms
.
RandomResizedCrop
(
224
),
transforms
.
RandomResizedCrop
(
image_size
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Permute
(
mode
=
'CHW'
),
normalize
])
else
:
self
.
transform
=
transforms
.
Compose
([
transforms
.
Resize
(
256
),
transforms
.
CenterCrop
(
224
),
transforms
.
Resize
(
resize_short_size
),
transforms
.
CenterCrop
(
image_size
),
transforms
.
Permute
(
mode
=
'CHW'
),
normalize
])
...
...
@@ -46,7 +51,7 @@ class ImageNetDataset(DatasetFolder):
img_path
,
label
=
self
.
samples
[
idx
]
img
=
cv2
.
imread
(
img_path
).
astype
(
np
.
float32
)
label
=
np
.
array
([
label
])
return
self
.
transform
(
img
,
label
)
return
self
.
transform
(
img
),
label
def
__len__
(
self
):
return
len
(
self
.
samples
)
examples/image_classification/main.py
浏览文件 @
2458c1fb
...
...
@@ -18,8 +18,6 @@ from __future__ import print_function
import
argparse
import
contextlib
import
os
import
sys
sys
.
path
.
append
(
'../'
)
import
time
import
math
...
...
@@ -89,8 +87,16 @@ def main():
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
train_dataset
=
ImageNetDataset
(
os
.
path
.
join
(
FLAGS
.
data
,
'train'
),
mode
=
'train'
)
val_dataset
=
ImageNetDataset
(
os
.
path
.
join
(
FLAGS
.
data
,
'val'
),
mode
=
'val'
)
os
.
path
.
join
(
FLAGS
.
data
,
'train'
),
mode
=
'train'
,
image_size
=
FLAGS
.
image_size
,
resize_short_size
=
FLAGS
.
resize_short_size
)
val_dataset
=
ImageNetDataset
(
os
.
path
.
join
(
FLAGS
.
data
,
'val'
),
mode
=
'val'
,
image_size
=
FLAGS
.
image_size
,
resize_short_size
=
FLAGS
.
resize_short_size
)
optim
=
make_optimizer
(
np
.
ceil
(
...
...
@@ -176,6 +182,13 @@ if __name__ == '__main__':
parser
.
add_argument
(
"--weight-decay"
,
default
=
1e-4
,
type
=
float
,
help
=
"weight decay"
)
parser
.
add_argument
(
"--momentum"
,
default
=
0.9
,
type
=
float
,
help
=
"momentum"
)
parser
.
add_argument
(
"--image-size"
,
default
=
224
,
type
=
int
,
help
=
"intput image size"
)
parser
.
add_argument
(
"--resize-short-size"
,
default
=
256
,
type
=
int
,
help
=
"short size of keeping ratio resize"
)
FLAGS
=
parser
.
parse_args
()
assert
FLAGS
.
data
,
"error: must provide data path"
main
()
examples/yolov3/main.py
浏览文件 @
2458c1fb
...
...
@@ -27,7 +27,7 @@ from paddle.io import DataLoader
from
hapi.model
import
Model
,
Input
,
set_device
from
hapi.distributed
import
DistributedBatchSampler
from
hapi.vision.transforms
import
Compose
,
BatchCompose
from
hapi.vision.transforms
import
BatchCompose
from
modeling
import
yolov3_darknet53
,
YoloLoss
from
coco
import
COCODataset
...
...
@@ -43,10 +43,9 @@ def make_optimizer(step_per_epoch, parameter_list=None):
momentum
=
0.9
weight_decay
=
5e-4
boundaries
=
[
step_per_epoch
*
e
for
e
in
[
200
,
250
]]
values
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
boundaries
)
+
1
)]
values
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
boundaries
)
+
1
)]
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
boundaries
,
values
=
values
)
boundaries
=
boundaries
,
values
=
values
)
learning_rate
=
fluid
.
layers
.
linear_lr_warmup
(
learning_rate
=
learning_rate
,
warmup_steps
=
warm_up_iter
,
...
...
@@ -63,77 +62,88 @@ def make_optimizer(step_per_epoch, parameter_list=None):
def
main
():
device
=
set_device
(
FLAGS
.
device
)
fluid
.
enable_dygraph
(
device
)
if
FLAGS
.
dynamic
else
None
inputs
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'img_id'
),
Input
([
None
,
2
],
'int32'
,
name
=
'img_shape'
),
Input
([
None
,
3
,
None
,
None
],
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
NUM_MAX_BOXES
,
4
],
'float32'
,
name
=
'gt_bbox'
),
Input
([
None
,
NUM_MAX_BOXES
],
'int32'
,
name
=
'gt_label'
),
Input
([
None
,
NUM_MAX_BOXES
],
'float32'
,
name
=
'gt_score'
)]
if
not
FLAGS
.
eval_only
:
# training mode
train_transform
=
Compose
([
ColorDistort
(),
RandomExpand
(),
RandomCrop
(),
RandomFlip
(),
NormalizeBox
(),
PadBox
(),
BboxXYXY2XYWH
()])
inputs
=
[
Input
(
[
None
,
1
],
'int64'
,
name
=
'img_id'
),
Input
(
[
None
,
2
],
'int32'
,
name
=
'img_shape'
),
Input
(
[
None
,
3
,
None
,
None
],
'float32'
,
name
=
'image'
)
]
labels
=
[
Input
(
[
None
,
NUM_MAX_BOXES
,
4
],
'float32'
,
name
=
'gt_bbox'
),
Input
(
[
None
,
NUM_MAX_BOXES
],
'int32'
,
name
=
'gt_label'
),
Input
(
[
None
,
NUM_MAX_BOXES
],
'float32'
,
name
=
'gt_score'
)
]
if
not
FLAGS
.
eval_only
:
# training mode
train_transform
=
Compose
([
ColorDistort
(),
RandomExpand
(),
RandomCrop
(),
RandomFlip
(),
NormalizeBox
(),
PadBox
(),
BboxXYXY2XYWH
()
])
train_collate_fn
=
BatchCompose
([
RandomShape
(),
NormalizeImage
()])
dataset
=
COCODataset
(
dataset_dir
=
FLAGS
.
data
,
anno_path
=
'annotations/instances_train2017.json'
,
image_dir
=
'train2017'
,
with_background
=
False
,
mixup
=
True
,
transform
=
train_transform
)
batch_sampler
=
DistributedBatchSampler
(
dataset
,
batch_size
=
FLAGS
.
batch_size
,
shuffle
=
True
,
drop_last
=
True
)
loader
=
DataLoader
(
dataset
,
batch_sampler
=
batch_sampler
,
places
=
device
,
num_workers
=
FLAGS
.
num_workers
,
return_list
=
True
,
collate_fn
=
train_collate_fn
)
else
:
# evaluation mode
eval_transform
=
Compose
([
ResizeImage
(
target_size
=
608
),
NormalizeBox
(),
PadBox
(),
BboxXYXY2XYWH
()])
dataset
=
COCODataset
(
dataset_dir
=
FLAGS
.
data
,
anno_path
=
'annotations/instances_train2017.json'
,
image_dir
=
'train2017'
,
with_background
=
False
,
mixup
=
True
,
transform
=
train_transform
)
batch_sampler
=
DistributedBatchSampler
(
dataset
,
batch_size
=
FLAGS
.
batch_size
,
shuffle
=
True
,
drop_last
=
True
)
loader
=
DataLoader
(
dataset
,
batch_sampler
=
batch_sampler
,
places
=
device
,
num_workers
=
FLAGS
.
num_workers
,
return_list
=
True
,
collate_fn
=
train_collate_fn
)
else
:
# evaluation mode
eval_transform
=
Compose
([
ResizeImage
(
target_size
=
608
),
NormalizeBox
(),
PadBox
(),
BboxXYXY2XYWH
()
])
eval_collate_fn
=
BatchCompose
([
NormalizeImage
()])
dataset
=
COCODataset
(
dataset_dir
=
FLAGS
.
data
,
anno_path
=
'annotations/instances_val2017.json'
,
image_dir
=
'val2017'
,
with_background
=
False
,
transform
=
eval_transform
)
dataset
=
COCODataset
(
dataset_dir
=
FLAGS
.
data
,
anno_path
=
'annotations/instances_val2017.json'
,
image_dir
=
'val2017'
,
with_background
=
False
,
transform
=
eval_transform
)
# batch_size can only be 1 in evaluation for YOLOv3
# prediction bbox is a LoDTensor
batch_sampler
=
DistributedBatchSampler
(
dataset
,
batch_size
=
1
,
shuffle
=
False
,
drop_last
=
False
)
loader
=
DataLoader
(
dataset
,
batch_sampler
=
batch_sampler
,
places
=
device
,
num_workers
=
FLAGS
.
num_workers
,
return_list
=
True
,
collate_fn
=
eval_collate_fn
)
batch_sampler
=
DistributedBatchSampler
(
dataset
,
batch_size
=
1
,
shuffle
=
False
,
drop_last
=
False
)
loader
=
DataLoader
(
dataset
,
batch_sampler
=
batch_sampler
,
places
=
device
,
num_workers
=
FLAGS
.
num_workers
,
return_list
=
True
,
collate_fn
=
eval_collate_fn
)
pretrained
=
FLAGS
.
eval_only
and
FLAGS
.
weights
is
None
model
=
yolov3_darknet53
(
num_classes
=
dataset
.
num_classes
,
model_mode
=
'eval'
if
FLAGS
.
eval_only
else
'train'
,
pretrained
=
pretrained
)
model
=
yolov3_darknet53
(
num_classes
=
dataset
.
num_classes
,
model_mode
=
'eval'
if
FLAGS
.
eval_only
else
'train'
,
pretrained
=
pretrained
)
if
FLAGS
.
pretrain_weights
and
not
FLAGS
.
eval_only
:
model
.
load
(
FLAGS
.
pretrain_weights
,
skip_mismatch
=
True
,
reset_optimizer
=
True
)
model
.
load
(
FLAGS
.
pretrain_weights
,
skip_mismatch
=
True
,
reset_optimizer
=
True
)
optim
=
make_optimizer
(
len
(
batch_sampler
),
parameter_list
=
model
.
parameters
())
optim
=
make_optimizer
(
len
(
batch_sampler
),
parameter_list
=
model
.
parameters
())
model
.
prepare
(
optim
,
YoloLoss
(
num_classes
=
dataset
.
num_classes
),
inputs
=
inputs
,
labels
=
labels
,
device
=
FLAGS
.
device
)
model
.
prepare
(
optim
,
YoloLoss
(
num_classes
=
dataset
.
num_classes
),
inputs
=
inputs
,
labels
=
labels
,
device
=
FLAGS
.
device
)
# NOTE: we implement COCO metric of YOLOv3 model here, separately
# from 'prepare' and 'fit' framework for follwing reason:
...
...
@@ -149,7 +159,8 @@ def main():
preds
=
model
.
predict
(
loader
,
stack_outputs
=
False
)
_
,
_
,
_
,
img_ids
,
bboxes
=
preds
anno_path
=
os
.
path
.
join
(
FLAGS
.
data
,
'annotations/instances_val2017.json'
)
anno_path
=
os
.
path
.
join
(
FLAGS
.
data
,
'annotations/instances_val2017.json'
)
coco_metric
=
COCOMetric
(
anno_path
=
anno_path
,
with_background
=
False
)
for
img_id
,
bbox
in
zip
(
img_ids
,
bboxes
):
coco_metric
.
update
(
img_id
,
bbox
)
...
...
@@ -176,7 +187,9 @@ def main():
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
"Yolov3 Training on VOC"
)
parser
.
add_argument
(
"--data"
,
type
=
str
,
default
=
'dataset/voc'
,
"--data"
,
type
=
str
,
default
=
'dataset/voc'
,
help
=
"path to dataset directory"
)
parser
.
add_argument
(
"--device"
,
type
=
str
,
default
=
'gpu'
,
help
=
"device to use, gpu or cpu"
)
...
...
@@ -187,23 +200,38 @@ if __name__ == '__main__':
parser
.
add_argument
(
"-e"
,
"--epoch"
,
default
=
300
,
type
=
int
,
help
=
"number of epoch"
)
parser
.
add_argument
(
"--no_mixup_epoch"
,
default
=
30
,
type
=
int
,
"--no_mixup_epoch"
,
default
=
30
,
type
=
int
,
help
=
"number of the last N epoch without image mixup"
)
parser
.
add_argument
(
'--lr'
,
'--learning-rate'
,
default
=
0.001
,
type
=
float
,
metavar
=
'LR'
,
'--lr'
,
'--learning-rate'
,
default
=
0.001
,
type
=
float
,
metavar
=
'LR'
,
help
=
'initial learning rate'
)
parser
.
add_argument
(
"-b"
,
"--batch_size"
,
default
=
8
,
type
=
int
,
help
=
"batch size"
)
parser
.
add_argument
(
"-j"
,
"--num_workers"
,
default
=
4
,
type
=
int
,
help
=
"reader worker number"
)
"-j"
,
"--num_workers"
,
default
=
4
,
type
=
int
,
help
=
"reader worker number"
)
parser
.
add_argument
(
"-p"
,
"--pretrain_weights"
,
default
=
None
,
type
=
str
,
"-p"
,
"--pretrain_weights"
,
default
=
None
,
type
=
str
,
help
=
"path to pretrained weights"
)
parser
.
add_argument
(
"-r"
,
"--resume"
,
default
=
None
,
type
=
str
,
help
=
"path to model weights"
)
"-r"
,
"--resume"
,
default
=
None
,
type
=
str
,
help
=
"path to model weights"
)
parser
.
add_argument
(
"-w"
,
"--weights"
,
default
=
None
,
type
=
str
,
"-w"
,
"--weights"
,
default
=
None
,
type
=
str
,
help
=
"path to weights for evaluation"
)
FLAGS
=
parser
.
parse_args
()
assert
FLAGS
.
data
,
"error: must provide data path"
...
...
examples/yolov3/modeling.py
浏览文件 @
2458c1fb
...
...
@@ -73,6 +73,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
class
YoloDetectionBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
channel
):
super
(
YoloDetectionBlock
,
self
).
__init__
()
...
...
@@ -81,38 +82,34 @@ class YoloDetectionBlock(fluid.dygraph.Layer):
"channel {} cannot be divided by 2"
.
format
(
channel
)
self
.
conv0
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
ch_in
=
ch_in
,
ch_out
=
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
conv1
=
ConvBNLayer
(
ch_in
=
channel
,
ch_out
=
channel
*
2
,
ch_out
=
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
conv2
=
ConvBNLayer
(
ch_in
=
channel
*
2
,
ch_in
=
channel
*
2
,
ch_out
=
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
conv3
=
ConvBNLayer
(
ch_in
=
channel
,
ch_out
=
channel
*
2
,
ch_out
=
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
route
=
ConvBNLayer
(
ch_in
=
channel
*
2
,
ch_in
=
channel
*
2
,
ch_out
=
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
tip
=
ConvBNLayer
(
ch_in
=
channel
,
ch_out
=
channel
*
2
,
ch_out
=
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
...
...
@@ -149,8 +146,10 @@ class YOLOv3(Model):
"model_mode should be 'train' 'eval' or 'test', but got "
\
"{}"
.
format
(
model_mode
)
self
.
model_mode
=
str
.
lower
(
model_mode
)
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchor_masks
=
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
self
.
valid_thresh
=
0.005
self
.
nms_thresh
=
0.45
...
...
@@ -158,7 +157,10 @@ class YOLOv3(Model):
self
.
nms_posk
=
100
self
.
draw_thresh
=
0.5
self
.
backbone
=
darknet53
(
pretrained
=
(
model_mode
==
'train'
))
self
.
backbone
=
darknet53
(
pretrained
=
(
model_mode
==
'train'
),
with_pool
=
False
,
num_classes
=-
1
)
self
.
block_outputs
=
[]
self
.
yolo_blocks
=
[]
self
.
route_blocks
=
[]
...
...
@@ -173,32 +175,46 @@ class YOLOv3(Model):
block_out
=
self
.
add_sublayer
(
"block_out_{}"
.
format
(
idx
),
Conv2D
(
num_channels
=
1024
//
(
2
**
idx
),
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
)),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
))))
Conv2D
(
num_channels
=
1024
//
(
2
**
idx
),
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
)),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
))))
self
.
block_outputs
.
append
(
block_out
)
if
idx
<
2
:
route
=
self
.
add_sublayer
(
"route2_{}"
.
format
(
idx
),
ConvBNLayer
(
ch_in
=
512
//
(
2
**
idx
),
ch_out
=
256
//
(
2
**
idx
),
filter_size
=
1
,
act
=
'leaky_relu'
))
ConvBNLayer
(
ch_in
=
512
//
(
2
**
idx
),
ch_out
=
256
//
(
2
**
idx
),
filter_size
=
1
,
act
=
'leaky_relu'
))
self
.
route_blocks
.
append
(
route
)
def
extract_feats
(
self
,
inputs
):
out
=
self
.
backbone
.
conv0
(
inputs
)
out
=
self
.
backbone
.
downsample0
(
out
)
blocks
=
[]
for
i
,
conv_block_i
in
enumerate
(
self
.
backbone
.
darknet53_conv_block_list
):
out
=
conv_block_i
(
out
)
blocks
.
append
(
out
)
if
i
<
len
(
self
.
backbone
.
stages
)
-
1
:
out
=
self
.
backbone
.
downsample_list
[
i
](
out
)
return
blocks
[
-
1
:
-
4
:
-
1
]
def
forward
(
self
,
img_id
,
img_shape
,
inputs
):
outputs
=
[]
boxes
=
[]
scores
=
[]
downsample
=
32
feats
=
self
.
backbone
(
inputs
)
feats
=
self
.
extract_feats
(
inputs
)
route
=
None
for
idx
,
feat
in
enumerate
(
feats
):
if
idx
>
0
:
...
...
@@ -233,15 +249,18 @@ class YOLOv3(Model):
if
self
.
model_mode
==
'train'
:
return
outputs
preds
=
[
img_id
,
fluid
.
layers
.
multiclass_nms
(
bboxes
=
fluid
.
layers
.
concat
(
boxes
,
axis
=
1
),
scores
=
fluid
.
layers
.
concat
(
scores
,
axis
=
2
),
score_threshold
=
self
.
valid_thresh
,
nms_top_k
=
self
.
nms_topk
,
keep_top_k
=
self
.
nms_posk
,
nms_threshold
=
self
.
nms_thresh
,
background_label
=-
1
)]
preds
=
[
img_id
,
fluid
.
layers
.
multiclass_nms
(
bboxes
=
fluid
.
layers
.
concat
(
boxes
,
axis
=
1
),
scores
=
fluid
.
layers
.
concat
(
scores
,
axis
=
2
),
score_threshold
=
self
.
valid_thresh
,
nms_top_k
=
self
.
nms_topk
,
keep_top_k
=
self
.
nms_posk
,
nms_threshold
=
self
.
nms_thresh
,
background_label
=-
1
)
]
if
self
.
model_mode
==
'test'
:
return
preds
...
...
@@ -249,14 +268,17 @@ class YOLOv3(Model):
# model_mode == "eval"
return
outputs
+
preds
class
YoloLoss
(
Loss
):
def
__init__
(
self
,
num_classes
=
80
,
num_max_boxes
=
50
):
super
(
YoloLoss
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
num_max_boxes
=
num_max_boxes
self
.
ignore_thresh
=
0.7
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
self
.
anchor_masks
=
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
def
forward
(
self
,
outputs
,
labels
):
...
...
@@ -265,7 +287,7 @@ class YoloLoss(Loss):
losses
=
[]
for
idx
,
out
in
enumerate
(
outputs
):
if
idx
==
3
:
break
# debug
if
idx
==
3
:
break
# debug
anchor_mask
=
self
.
anchor_masks
[
idx
]
loss
=
fluid
.
layers
.
yolov3_loss
(
x
=
out
,
...
...
@@ -284,8 +306,10 @@ class YoloLoss(Loss):
return
losses
def
_yolov3_darknet
(
num_layers
=
53
,
num_classes
=
80
,
model_mode
=
'train'
,
pretrained
=
True
):
def
_yolov3_darknet
(
num_layers
=
53
,
num_classes
=
80
,
model_mode
=
'train'
,
pretrained
=
True
):
model
=
YOLOv3
(
num_classes
,
model_mode
)
if
pretrained
:
assert
num_layers
in
pretrain_infos
.
keys
(),
\
...
...
examples/yolov3/transforms.py
浏览文件 @
2458c1fb
...
...
@@ -20,6 +20,7 @@ import traceback
import
numpy
as
np
__all__
=
[
"Compose"
,
'ColorDistort'
,
'RandomExpand'
,
'RandomCrop'
,
...
...
@@ -33,6 +34,37 @@ __all__ = [
]
class
Compose
(
object
):
"""Composes several transforms together.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
"""
def
__init__
(
self
,
transforms
):
self
.
transforms
=
transforms
def
__call__
(
self
,
*
data
):
for
f
in
self
.
transforms
:
try
:
data
=
f
(
*
data
)
except
Exception
as
e
:
stack_info
=
traceback
.
format_exc
()
print
(
"fail to perform transform [{}] with error: "
"{} and stack:
\n
{}"
.
format
(
f
,
e
,
str
(
stack_info
)))
raise
e
return
data
def
__repr__
(
self
):
format_string
=
self
.
__class__
.
__name__
+
'('
for
t
in
self
.
transforms
:
format_string
+=
'
\n
'
format_string
+=
' {0}'
.
format
(
t
)
format_string
+=
'
\n
)'
return
format_string
class
ColorDistort
(
object
):
"""Random color distortion.
...
...
@@ -147,7 +179,10 @@ class RandomExpand(object):
fill_value (list): color value used to fill the canvas. in RGB order.
"""
def
__init__
(
self
,
ratio
=
4.
,
prob
=
0.5
,
fill_value
=
[
123.675
,
116.28
,
103.53
]):
def
__init__
(
self
,
ratio
=
4.
,
prob
=
0.5
,
fill_value
=
[
123.675
,
116.28
,
103.53
]):
assert
ratio
>
1.01
,
"expand ratio must be larger than 1.01"
self
.
ratio
=
ratio
self
.
prob
=
prob
...
...
@@ -493,8 +528,7 @@ def _crop_box_with_center_constraint(box, crop):
cropped_box
[:,
:
2
]
-=
crop
[:
2
]
cropped_box
[:,
2
:]
-=
crop
[:
2
]
centers
=
(
box
[:,
:
2
]
+
box
[:,
2
:])
/
2
valid
=
np
.
logical_and
(
crop
[:
2
]
<=
centers
,
centers
<
crop
[
2
:]).
all
(
axis
=
1
)
valid
=
np
.
logical_and
(
crop
[:
2
]
<=
centers
,
centers
<
crop
[
2
:]).
all
(
axis
=
1
)
valid
=
np
.
logical_and
(
valid
,
(
cropped_box
[:,
:
2
]
<
cropped_box
[:,
2
:]).
all
(
axis
=
1
))
return
cropped_box
,
np
.
where
(
valid
)[
0
]
...
...
@@ -517,8 +551,8 @@ def random_crop(inputs):
for
i
in
range
(
50
):
scale
=
np
.
random
.
uniform
(
*
scaling
)
min_ar
,
max_ar
=
aspect_ratios
ar
=
np
.
random
.
uniform
(
max
(
min_ar
,
scale
**
2
),
min
(
max_ar
,
scale
**-
2
))
ar
=
np
.
random
.
uniform
(
max
(
min_ar
,
scale
**
2
),
min
(
max_ar
,
scale
**-
2
))
crop_h
=
int
(
h
*
scale
/
np
.
sqrt
(
ar
))
crop_w
=
int
(
w
*
scale
*
np
.
sqrt
(
ar
))
crop_y
=
np
.
random
.
randint
(
0
,
h
-
crop_h
)
...
...
@@ -529,7 +563,8 @@ def random_crop(inputs):
continue
cropped_box
,
valid_ids
=
_crop_box_with_center_constraint
(
gt_box
,
np
.
array
(
crop_box
,
dtype
=
np
.
float32
))
gt_box
,
np
.
array
(
crop_box
,
dtype
=
np
.
float32
))
if
valid_ids
.
size
>
0
:
found
=
True
break
...
...
@@ -545,9 +580,7 @@ def random_crop(inputs):
class
ResizeImage
(
object
):
def
__init__
(
self
,
target_size
=
0
,
interp
=
cv2
.
INTER_CUBIC
):
def
__init__
(
self
,
target_size
=
0
,
interp
=
cv2
.
INTER_CUBIC
):
"""
Rescale image to the specified target size.
If target_size is list, selected a scale randomly as the specified
...
...
@@ -574,8 +607,8 @@ class ResizeImage(object):
raise
ImageError
(
'{}: image is not 3-dimensional.'
.
format
(
self
))
im_scale_x
=
float
(
self
.
target_size
)
/
float
(
im
.
shape
[
1
])
im_scale_y
=
float
(
self
.
target_size
)
/
float
(
im
.
shape
[
0
])
resize_w
=
self
.
target_size
resize_h
=
self
.
target_size
resize_w
=
self
.
target_size
resize_h
=
self
.
target_size
im
=
cv2
.
resize
(
im
,
...
...
@@ -586,4 +619,3 @@ class ResizeImage(object):
interpolation
=
self
.
interp
)
return
[
im_id
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
hapi/datasets/folder.py
浏览文件 @
2458c1fb
...
...
@@ -150,7 +150,7 @@ class DatasetFolder(Dataset):
path
,
target
=
self
.
samples
[
index
]
sample
=
self
.
loader
(
path
)
if
self
.
transform
is
not
None
:
sample
,
target
=
self
.
transform
(
sample
,
target
)
sample
,
target
=
self
.
transform
(
sample
)
return
sample
,
target
...
...
hapi/model.py
浏览文件 @
2458c1fb
...
...
@@ -1135,7 +1135,7 @@ class Model(fluid.dygraph.Layer):
test_data
,
batch_size
=
1
,
num_workers
=
0
,
stack_outputs
=
Tru
e
):
stack_outputs
=
Fals
e
):
"""
FIXME: add more comments and usage
Args:
...
...
@@ -1183,20 +1183,29 @@ class Model(fluid.dygraph.Layer):
loader
=
test_loader
()
outputs
=
[]
count
=
0
for
data
in
tqdm
.
tqdm
(
loader
):
data
=
flatten
(
data
)
outputs
.
append
(
self
.
test_batch
(
data
[:
len
(
self
.
_inputs
)]))
out
=
to_list
(
self
.
test_batch
(
data
[:
len
(
self
.
_inputs
)]))
outputs
.
append
(
out
)
count
+=
out
[
0
].
shape
[
0
]
if
test_loader
is
not
None
and
self
.
_adapter
.
_nranks
>
1
\
and
isinstance
(
test_loader
,
DataLoader
)
\
and
count
>
len
(
test_loader
.
dataset
):
size
=
outputs
[
-
1
][
0
].
shape
[
0
]
-
(
count
-
len
(
test_loader
.
dataset
))
outputs
[
-
1
]
=
[
o
[:
size
]
for
o
in
outputs
[
-
1
]]
# NOTE: for lod tensor output, we should not stack outputs
# for stacking may loss its detail info
outputs
=
list
(
zip
(
*
outputs
))
if
stack_outputs
:
outputs
=
[
np
.
stack
(
outs
,
axis
=
0
)
for
outs
in
outputs
]
outputs
=
[
np
.
vstack
(
outs
)
for
outs
in
outputs
]
self
.
_test_dataloader
=
None
if
test_loader
is
not
None
and
self
.
_adapter
.
_nranks
>
1
\
and
isinstance
(
test_loader
,
DataLoader
):
outputs
=
[
o
[:
len
(
test_loader
.
dataset
)]
for
o
in
outputs
]
return
outputs
def
_run_one_epoch
(
self
,
...
...
hapi/vision/models/darknet.py
浏览文件 @
2458c1fb
...
...
@@ -12,11 +12,12 @@
#See the License for the specific language governing permissions and
#limitations under the License.
import
math
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
,
Pool2D
,
Linear
from
hapi.model
import
Model
from
hapi.download
import
get_weights_path
...
...
@@ -25,8 +26,8 @@ __all__ = ['DarkNet', 'darknet53']
# {num_layers: (url, md5)}
pretrain_infos
=
{
53
:
(
'https://paddlemodels.bj.bcebos.com/hapi
/darknet53.pdparams'
,
'2506357a5c31e865785112fc614a487d
'
)
53
:
(
'https://paddle-hapi.bj.bcebos.com/models
/darknet53.pdparams'
,
'ca506a90e2efecb9a2093f8ada808708
'
)
}
...
...
@@ -66,17 +67,14 @@ class ConvBNLayer(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
out
=
self
.
conv
(
inputs
)
out
=
self
.
batch_norm
(
out
)
# out = fluid.layers.relu(out)
if
self
.
act
==
'leaky'
:
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
class
DownSample
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
):
super
(
DownSample
,
self
).
__init__
()
...
...
@@ -87,46 +85,45 @@ class DownSample(fluid.dygraph.Layer):
stride
=
stride
,
padding
=
padding
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
):
out
=
self
.
conv_bn_layer
(
inputs
)
return
out
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
conv1
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
ch_in
=
ch_in
,
ch_out
=
ch_out
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
conv2
=
ConvBNLayer
(
ch_in
=
ch_out
,
ch_out
=
ch_out
*
2
,
ch_out
=
ch_out
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
def
forward
(
self
,
inputs
):
conv1
=
self
.
conv1
(
inputs
)
conv2
=
self
.
conv2
(
conv1
)
out
=
fluid
.
layers
.
elementwise_add
(
x
=
inputs
,
y
=
conv2
,
act
=
None
)
return
out
class
LayerWarp
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
count
):
super
(
LayerWarp
,
self
).
__init__
()
super
(
LayerWarp
,
self
).
__init__
()
self
.
basicblock0
=
BasicBlock
(
ch_in
,
ch_out
)
self
.
res_out_list
=
[]
for
i
in
range
(
1
,
count
):
for
i
in
range
(
1
,
count
):
res_out
=
self
.
add_sublayer
(
"basic_block_%d"
%
(
i
),
BasicBlock
(
ch_out
*
2
,
ch_out
))
BasicBlock
(
ch_out
*
2
,
ch_out
))
self
.
res_out_list
.
append
(
res_out
)
self
.
ch_out
=
ch_out
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
y
=
self
.
basicblock0
(
inputs
)
for
basic_block_i
in
self
.
res_out_list
:
y
=
basic_block_i
(
y
)
...
...
@@ -142,61 +139,82 @@ class DarkNet(Model):
Args:
num_layers (int): layer number of DarkNet, only 53 supported currently, default: 53.
ch_in (int): channel number of input data, default 3.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
"""
def
__init__
(
self
,
num_layers
=
53
,
ch_in
=
3
):
def
__init__
(
self
,
num_layers
=
53
,
num_classes
=
1000
,
with_pool
=
True
,
classifier_activation
=
'softmax'
):
super
(
DarkNet
,
self
).
__init__
()
assert
num_layers
in
DarkNet_cfg
.
keys
(),
\
"only support num_layers in {} currently"
\
.
format
(
DarkNet_cfg
.
keys
())
self
.
stages
=
DarkNet_cfg
[
num_layers
]
self
.
stages
=
self
.
stages
[
0
:
5
]
self
.
num_classes
=
num_classes
self
.
with_pool
=
True
ch_in
=
3
self
.
conv0
=
ConvBNLayer
(
ch_in
=
ch_in
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
ch_in
=
ch_in
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
downsample0
=
DownSample
(
ch_in
=
32
,
ch_out
=
32
*
2
)
self
.
downsample0
=
DownSample
(
ch_in
=
32
,
ch_out
=
32
*
2
)
self
.
darknet53_conv_block_list
=
[]
self
.
downsample_list
=
[]
ch_in
=
[
64
,
128
,
256
,
512
,
1024
]
ch_in
=
[
64
,
128
,
256
,
512
,
1024
]
for
i
,
stage
in
enumerate
(
self
.
stages
):
conv_block
=
self
.
add_sublayer
(
"stage_%d"
%
(
i
),
LayerWarp
(
int
(
ch_in
[
i
]),
32
*
(
2
**
i
),
stage
))
conv_block
=
self
.
add_sublayer
(
"stage_%d"
%
(
i
),
LayerWarp
(
int
(
ch_in
[
i
]),
32
*
(
2
**
i
),
stage
))
self
.
darknet53_conv_block_list
.
append
(
conv_block
)
for
i
in
range
(
len
(
self
.
stages
)
-
1
):
downsample
=
self
.
add_sublayer
(
"stage_%d_downsample"
%
i
,
DownSample
(
ch_in
=
32
*
(
2
**
(
i
+
1
)),
ch_out
=
32
*
(
2
**
(
i
+
2
))))
ch_in
=
32
*
(
2
**
(
i
+
1
)),
ch_out
=
32
*
(
2
**
(
i
+
2
))))
self
.
downsample_list
.
append
(
downsample
)
def
forward
(
self
,
inputs
):
if
self
.
with_pool
:
self
.
global_pool
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
if
self
.
num_classes
>
0
:
stdv
=
1.0
/
math
.
sqrt
(
32
*
(
2
**
(
i
+
2
)))
self
.
fc_input_dim
=
32
*
(
2
**
(
i
+
2
))
self
.
fc
=
Linear
(
self
.
fc_input_dim
,
num_classes
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
inputs
):
out
=
self
.
conv0
(
inputs
)
out
=
self
.
downsample0
(
out
)
blocks
=
[]
for
i
,
conv_block_i
in
enumerate
(
self
.
darknet53_conv_block_list
):
out
=
conv_block_i
(
out
)
blocks
.
append
(
out
)
if
i
<
len
(
self
.
stages
)
-
1
:
out
=
self
.
downsample_list
[
i
](
out
)
return
blocks
[
-
1
:
-
4
:
-
1
]
if
self
.
with_pool
:
out
=
self
.
global_pool
(
out
)
if
self
.
num_classes
>
0
:
out
=
fluid
.
layers
.
reshape
(
out
,
shape
=
[
-
1
,
self
.
fc_input_dim
])
out
=
self
.
fc
(
out
)
return
out
def
_darknet
(
num_layers
=
53
,
input_channels
=
3
,
pretrained
=
True
):
model
=
DarkNet
(
num_layers
,
input_channel
s
)
def
_darknet
(
num_layers
=
53
,
pretrained
=
False
,
**
kwargs
):
model
=
DarkNet
(
num_layers
,
**
kwarg
s
)
if
pretrained
:
assert
num_layers
in
pretrain_infos
.
keys
(),
\
"DarkNet{} do not have pretrained weights now, "
\
...
...
@@ -208,7 +226,7 @@ def _darknet(num_layers=53, input_channels=3, pretrained=True):
return
model
def
darknet53
(
input_channels
=
3
,
pretrained
=
True
):
def
darknet53
(
pretrained
=
False
,
**
kwargs
):
"""DarkNet 53-layer model
Args:
...
...
@@ -216,4 +234,4 @@ def darknet53(input_channels=3, pretrained=True):
pretrained (bool): If True, returns a model pre-trained on ImageNet,
default True.
"""
return
_darknet
(
53
,
input_channels
,
pretrained
)
return
_darknet
(
53
,
pretrained
,
**
kwargs
)
hapi/vision/models/lenet.py
0 → 100644
浏览文件 @
2458c1fb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Conv2D
,
BatchNorm
,
Pool2D
,
Linear
from
paddle.fluid.dygraph.container
import
Sequential
from
hapi.model
import
Model
__all__
=
[
'LeNet'
]
class
LeNet
(
Model
):
"""LeNet model from
`"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_
Args:
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 10.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
"""
def
__init__
(
self
,
num_classes
=
10
,
classifier_activation
=
'softmax'
):
super
(
LeNet
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
features
=
Sequential
(
Conv2D
(
1
,
6
,
3
,
stride
=
1
,
padding
=
1
),
Pool2D
(
2
,
'max'
,
2
),
Conv2D
(
6
,
16
,
5
,
stride
=
1
,
padding
=
0
),
Pool2D
(
2
,
'max'
,
2
))
if
num_classes
>
0
:
self
.
fc
=
Sequential
(
Linear
(
400
,
120
),
Linear
(
120
,
84
),
Linear
(
84
,
10
,
act
=
classifier_activation
))
def
forward
(
self
,
inputs
):
x
=
self
.
features
(
inputs
)
if
self
.
num_classes
>
0
:
x
=
fluid
.
layers
.
flatten
(
x
,
1
)
x
=
self
.
fc
(
x
)
return
x
hapi/vision/transforms/transforms.py
浏览文件 @
2458c1fb
...
...
@@ -64,10 +64,10 @@ class Compose(object):
def
__init__
(
self
,
transforms
):
self
.
transforms
=
transforms
def
__call__
(
self
,
*
data
):
def
__call__
(
self
,
data
):
for
f
in
self
.
transforms
:
try
:
data
=
f
(
*
data
)
data
=
f
(
data
)
except
Exception
as
e
:
stack_info
=
traceback
.
format_exc
()
print
(
"fail to perform transform [{}] with error: "
...
...
@@ -130,8 +130,8 @@ class Resize(object):
self
.
size
=
size
self
.
interpolation
=
interpolation
def
__call__
(
self
,
img
,
lbl
):
return
F
.
resize
(
img
,
self
.
size
,
self
.
interpolation
)
,
lbl
def
__call__
(
self
,
img
):
return
F
.
resize
(
img
,
self
.
size
,
self
.
interpolation
)
class
RandomResizedCrop
(
object
):
...
...
@@ -193,10 +193,10 @@ class RandomResizedCrop(object):
y
=
(
height
-
h
)
//
2
return
x
,
y
,
w
,
h
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
x
,
y
,
w
,
h
=
self
.
_get_params
(
img
)
cropped_img
=
img
[
y
:
y
+
h
,
x
:
x
+
w
]
return
F
.
resize
(
cropped_img
,
self
.
output_size
,
self
.
interpolation
)
,
lbl
return
F
.
resize
(
cropped_img
,
self
.
output_size
,
self
.
interpolation
)
class
CenterCropResize
(
object
):
...
...
@@ -224,10 +224,10 @@ class CenterCropResize(object):
y
=
(
w
+
1
-
c
)
//
2
return
c
,
x
,
y
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
c
,
x
,
y
=
self
.
_get_params
(
img
)
cropped_img
=
img
[
x
:
x
+
c
,
y
:
y
+
c
,
:]
return
F
.
resize
(
cropped_img
,
self
.
size
,
self
.
interpolation
)
,
lbl
return
F
.
resize
(
cropped_img
,
self
.
size
,
self
.
interpolation
)
class
CenterCrop
(
object
):
...
...
@@ -251,10 +251,10 @@ class CenterCrop(object):
y
=
int
(
round
((
h
-
th
)
/
2.0
))
return
x
,
y
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
x
,
y
=
self
.
_get_params
(
img
)
th
,
tw
=
self
.
output_size
return
img
[
y
:
y
+
th
,
x
:
x
+
tw
]
,
lbl
return
img
[
y
:
y
+
th
,
x
:
x
+
tw
]
class
RandomHorizontalFlip
(
object
):
...
...
@@ -267,10 +267,10 @@ class RandomHorizontalFlip(object):
def
__init__
(
self
,
prob
=
0.5
):
self
.
prob
=
prob
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
if
np
.
random
.
random
()
<
self
.
prob
:
return
F
.
flip
(
img
,
code
=
1
)
,
lbl
return
img
,
lbl
return
F
.
flip
(
img
,
code
=
1
)
return
img
class
RandomVerticalFlip
(
object
):
...
...
@@ -283,10 +283,10 @@ class RandomVerticalFlip(object):
def
__init__
(
self
,
prob
=
0.5
):
self
.
prob
=
prob
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
if
np
.
random
.
random
()
<
self
.
prob
:
return
F
.
flip
(
img
,
code
=
0
)
,
lbl
return
img
,
lbl
return
F
.
flip
(
img
,
code
=
0
)
return
img
class
Normalize
(
object
):
...
...
@@ -311,8 +311,8 @@ class Normalize(object):
self
.
mean
=
np
.
array
(
mean
,
dtype
=
np
.
float32
).
reshape
(
len
(
mean
),
1
,
1
)
self
.
std
=
np
.
array
(
std
,
dtype
=
np
.
float32
).
reshape
(
len
(
std
),
1
,
1
)
def
__call__
(
self
,
img
,
lbl
):
return
(
img
-
self
.
mean
)
/
self
.
std
,
lbl
def
__call__
(
self
,
img
):
return
(
img
-
self
.
mean
)
/
self
.
std
class
Permute
(
object
):
...
...
@@ -333,12 +333,12 @@ class Permute(object):
self
.
mode
=
mode
self
.
to_rgb
=
to_rgb
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
if
self
.
to_rgb
:
img
=
img
[...,
::
-
1
]
if
self
.
mode
==
"CHW"
:
return
img
.
transpose
((
2
,
0
,
1
))
,
lbl
return
img
,
lbl
return
img
.
transpose
((
2
,
0
,
1
))
return
img
class
GaussianNoise
(
object
):
...
...
@@ -354,11 +354,11 @@ class GaussianNoise(object):
self
.
mean
=
np
.
array
(
mean
,
dtype
=
np
.
float32
)
self
.
std
=
np
.
array
(
std
,
dtype
=
np
.
float32
)
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
dtype
=
img
.
dtype
noise
=
np
.
random
.
normal
(
self
.
mean
,
self
.
std
,
img
.
shape
)
*
255
img
=
img
+
noise
.
astype
(
np
.
float32
)
return
np
.
clip
(
img
,
0
,
255
).
astype
(
dtype
)
,
lbl
return
np
.
clip
(
img
,
0
,
255
).
astype
(
dtype
)
class
BrightnessTransform
(
object
):
...
...
@@ -374,15 +374,15 @@ class BrightnessTransform(object):
raise
ValueError
(
"brightness value should be non-negative"
)
self
.
value
=
value
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
,
lbl
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
img
=
img
*
alpha
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
,
lbl
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
ContrastTransform
(
object
):
...
...
@@ -398,16 +398,16 @@ class ContrastTransform(object):
raise
ValueError
(
"contrast value should be non-negative"
)
self
.
value
=
value
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
,
lbl
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
img
=
img
*
alpha
+
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
).
mean
()
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
,
lbl
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
SaturationTransform
(
object
):
...
...
@@ -423,9 +423,9 @@ class SaturationTransform(object):
raise
ValueError
(
"saturation value should be non-negative"
)
self
.
value
=
value
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
,
lbl
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
...
...
@@ -433,7 +433,7 @@ class SaturationTransform(object):
gray_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
gray_img
=
gray_img
[...,
np
.
newaxis
]
img
=
img
*
alpha
+
gray_img
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
,
lbl
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
HueTransform
(
object
):
...
...
@@ -449,9 +449,9 @@ class HueTransform(object):
raise
ValueError
(
"hue value should be in [0.0, 0.5]"
)
self
.
value
=
value
def
__call__
(
self
,
img
,
lbl
):
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
,
lbl
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
uint8
)
...
...
@@ -464,7 +464,7 @@ class HueTransform(object):
with
np
.
errstate
(
over
=
"ignore"
):
h
+=
np
.
uint8
(
alpha
*
255
)
hsv_img
=
cv2
.
merge
([
h
,
s
,
v
])
return
cv2
.
cvtColor
(
hsv_img
,
cv2
.
COLOR_HSV2BGR_FULL
).
astype
(
dtype
)
,
lbl
return
cv2
.
cvtColor
(
hsv_img
,
cv2
.
COLOR_HSV2BGR_FULL
).
astype
(
dtype
)
class
ColorJitter
(
object
):
...
...
@@ -499,5 +499,5 @@ class ColorJitter(object):
random
.
shuffle
(
transforms
)
self
.
transforms
=
Compose
(
transforms
)
def
__call__
(
self
,
img
,
lbl
):
return
self
.
transforms
(
img
,
lbl
)
def
__call__
(
self
,
img
):
return
self
.
transforms
(
img
)
mnist.py
浏览文件 @
2458c1fb
...
...
@@ -24,10 +24,10 @@ import numpy as np
from
paddle
import
fluid
from
paddle.fluid.optimizer
import
Momentum
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
Linear
from
vision.datasets
import
MNIST
as
MnistDataset
from
hapi.datasets.mnist
import
MNIST
as
MnistDataset
from
model
import
Model
,
CrossEntropy
,
Input
,
set_device
from
metrics
import
Accuracy
from
hapi.
model
import
Model
,
CrossEntropy
,
Input
,
set_device
from
hapi.
metrics
import
Accuracy
class
SimpleImgConvPool
(
fluid
.
dygraph
.
Layer
):
...
...
tests/test_model.py
浏览文件 @
2458c1fb
...
...
@@ -190,7 +190,8 @@ class TestModel(unittest.TestCase):
eval_result
=
model
.
evaluate
(
val_dataset
,
batch_size
=
batch_size
)
output
=
model
.
predict
(
test_dataset
,
batch_size
=
batch_size
)
output
=
model
.
predict
(
test_dataset
,
batch_size
=
batch_size
,
stack_outputs
=
True
)
np
.
testing
.
assert_equal
(
output
[
0
].
shape
[
0
],
len
(
test_dataset
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录