Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
187b3537
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
187b3537
编写于
4月 09, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
4月 09, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #30 from heavengate/fix_tsm_yolov3_download
fix tsm.py and yolov3/dataset/download_voc.py
上级
3203066d
12896f28
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
205 addition
and
1 deletion
+205
-1
models/tsm.py
models/tsm.py
+204
-0
yolov3/dataset/download_voc.py
yolov3/dataset/download_voc.py
+1
-1
未找到文件。
models/tsm.py
0 → 100644
浏览文件 @
187b3537
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
math
import
paddle.fluid
as
fluid
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
model
import
Model
from
.download
import
get_weights_path
__all__
=
[
"TSM_ResNet"
,
"tsm_resnet50"
]
# {num_layers: (url, md5)}
pretrain_infos
=
{
50
:
(
'https://paddlemodels.bj.bcebos.com/hapi/tsm_resnet50.pdparams'
,
'5755dc538e422589f417f7b38d7cc3c7'
)
}
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
None
,
act
=
None
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(),
bias_attr
=
fluid
.
param_attr
.
ParamAttr
())
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
seg_num
=
8
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
self
.
seg_num
=
seg_num
self
.
_num_channels_out
=
int
(
num_filters
*
4
)
def
forward
(
self
,
inputs
):
shifts
=
fluid
.
layers
.
temporal_shift
(
inputs
,
self
.
seg_num
,
1.0
/
8
)
y
=
self
.
conv0
(
shifts
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
"relu"
)
return
y
class
TSM_ResNet
(
Model
):
"""
TSM network with ResNet as backbone
Args:
num_layers (int): ResNet layer number, only support 50 currently.
Default 50.
seg_num (int): segment number of each video sample. Default 8.
num_classes (int): video class number. Default 400.
"""
def
__init__
(
self
,
num_layers
=
50
,
seg_num
=
8
,
num_classes
=
400
):
super
(
TSM_ResNet
,
self
).
__init__
()
self
.
layers
=
num_layers
self
.
seg_num
=
seg_num
self
.
class_dim
=
num_classes
if
self
.
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
else
:
raise
NotImplementedError
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
num_channels
=
64
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
seg_num
=
self
.
seg_num
))
num_channels
=
int
(
bottleneck_block
.
_num_channels_out
)
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
Linear
(
2048
,
self
.
class_dim
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
fluid
.
param_attr
.
ParamAttr
(
learning_rate
=
2.0
,
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.
)))
def
forward
(
self
,
inputs
):
y
=
fluid
.
layers
.
reshape
(
inputs
,
[
-
1
,
inputs
.
shape
[
2
],
inputs
.
shape
[
3
],
inputs
.
shape
[
4
]])
y
=
self
.
conv
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
dropout
(
y
,
dropout_prob
=
0.5
)
y
=
fluid
.
layers
.
reshape
(
y
,
[
-
1
,
self
.
seg_num
,
y
.
shape
[
1
]])
y
=
fluid
.
layers
.
reduce_mean
(
y
,
dim
=
1
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
2048
])
y
=
self
.
out
(
y
)
return
y
def
_tsm_resnet
(
num_layers
,
seg_num
=
8
,
num_classes
=
400
,
pretrained
=
True
):
model
=
TSM_ResNet
(
num_layers
,
seg_num
,
num_classes
)
if
pretrained
:
assert
num_layers
in
pretrain_infos
.
keys
(),
\
"TSM-ResNet{} do not have pretrained weights now, "
\
"pretrained should be set as False"
.
format
(
num_layers
)
weight_path
=
get_weights_path
(
*
(
pretrain_infos
[
num_layers
]))
assert
weight_path
.
endswith
(
'.pdparams'
),
\
"suffix of weight must be .pdparams"
model
.
load
(
weight_path
[:
-
9
])
return
model
def
tsm_resnet50
(
seg_num
=
8
,
num_classes
=
400
,
pretrained
=
True
):
return
_tsm_resnet
(
50
,
seg_num
,
num_classes
,
pretrained
)
yolov3/dataset/download_voc.py
浏览文件 @
187b3537
...
@@ -17,7 +17,7 @@ import os.path as osp
...
@@ -17,7 +17,7 @@ import os.path as osp
import
sys
import
sys
import
tarfile
import
tarfile
from
download
import
_download
from
models.
download
import
_download
import
logging
import
logging
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录