未验证 提交 187b3537 编写于 作者: K Kaipeng Deng 提交者: GitHub

Merge pull request #30 from heavengate/fix_tsm_yolov3_download

fix tsm.py and yolov3/dataset/download_voc.py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import math
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from model import Model
from .download import get_weights_path
__all__ = ["TSM_ResNet", "tsm_resnet50"]
# {num_layers: (url, md5)}
pretrain_infos = {
50: ('https://paddlemodels.bj.bcebos.com/hapi/tsm_resnet50.pdparams',
'5755dc538e422589f417f7b38d7cc3c7')
}
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=None,
act=None,
param_attr=fluid.param_attr.ParamAttr(),
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=fluid.param_attr.ParamAttr(),
bias_attr=fluid.param_attr.ParamAttr())
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
seg_num=8):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu')
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride)
self.shortcut = shortcut
self.seg_num = seg_num
self._num_channels_out = int(num_filters * 4)
def forward(self, inputs):
shifts = fluid.layers.temporal_shift(inputs, self.seg_num, 1.0 / 8)
y = self.conv0(shifts)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2, act="relu")
return y
class TSM_ResNet(Model):
"""
TSM network with ResNet as backbone
Args:
num_layers (int): ResNet layer number, only support 50 currently.
Default 50.
seg_num (int): segment number of each video sample. Default 8.
num_classes (int): video class number. Default 400.
"""
def __init__(self, num_layers=50, seg_num=8, num_classes=400):
super(TSM_ResNet, self).__init__()
self.layers = num_layers
self.seg_num = seg_num
self.class_dim = num_classes
if self.layers == 50:
depth = [3, 4, 6, 3]
else:
raise NotImplementedError
num_filters = [64, 128, 256, 512]
self.conv = ConvBNLayer(
num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu')
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
self.bottleneck_block_list = []
num_channels = 64
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
seg_num=self.seg_num))
num_channels = int(bottleneck_block._num_channels_out)
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.out = Linear(
2048,
self.class_dim,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=fluid.param_attr.ParamAttr(
learning_rate=2.0, regularizer=fluid.regularizer.L2Decay(0.)))
def forward(self, inputs):
y = fluid.layers.reshape(
inputs, [-1, inputs.shape[2], inputs.shape[3], inputs.shape[4]])
y = self.conv(y)
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = fluid.layers.dropout(y, dropout_prob=0.5)
y = fluid.layers.reshape(y, [-1, self.seg_num, y.shape[1]])
y = fluid.layers.reduce_mean(y, dim=1)
y = fluid.layers.reshape(y, shape=[-1, 2048])
y = self.out(y)
return y
def _tsm_resnet(num_layers, seg_num=8, num_classes=400, pretrained=True):
model = TSM_ResNet(num_layers, seg_num, num_classes)
if pretrained:
assert num_layers in pretrain_infos.keys(), \
"TSM-ResNet{} do not have pretrained weights now, " \
"pretrained should be set as False".format(num_layers)
weight_path = get_weights_path(*(pretrain_infos[num_layers]))
assert weight_path.endswith('.pdparams'), \
"suffix of weight must be .pdparams"
model.load(weight_path[:-9])
return model
def tsm_resnet50(seg_num=8, num_classes=400, pretrained=True):
return _tsm_resnet(50, seg_num, num_classes, pretrained)
......@@ -17,7 +17,7 @@ import os.path as osp
import sys
import tarfile
from download import _download
from models.download import _download
import logging
logger = logging.getLogger(__name__)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册