Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
03b7e92f
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
03b7e92f
编写于
3月 13, 2020
作者:
Q
qingqing01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Put inputs and labels setting in prepare
上级
44291186
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
71 addition
and
292 deletion
+71
-292
mnist.py
mnist.py
+8
-8
mnist2.py
mnist2.py
+0
-217
model.py
model.py
+63
-67
未找到文件。
mnist.py
浏览文件 @
03b7e92f
...
...
@@ -76,8 +76,8 @@ class SimpleImgConvPool(fluid.dygraph.Layer):
class
MNIST
(
Model
):
def
__init__
(
self
,
inputs
=
None
,
targets
=
None
):
super
(
MNIST
,
self
).
__init__
(
inputs
,
targets
)
def
__init__
(
self
):
super
(
MNIST
,
self
).
__init__
()
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
...
...
@@ -140,15 +140,15 @@ def main():
device_ids
=
list
(
range
(
FLAGS
.
num_devices
))
with
guard
:
inputs
=
[
Input
([
None
,
1
,
28
,
28
],
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
model
=
MNIST
(
inputs
,
labels
)
#model = MNIST()
model
=
MNIST
()
optim
=
Momentum
(
learning_rate
=
FLAGS
.
lr
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
model
.
prepare
(
optim
,
CrossEntropy
())
inputs
=
[
Input
([
None
,
1
,
28
,
28
],
'float32'
,
name
=
'image'
)]
#inputs = {'inputs': Input([None, 1, 28, 28], 'float32', name='image')}
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
model
.
prepare
(
optim
,
CrossEntropy
(),
inputs
,
labels
)
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
...
...
@@ -199,7 +199,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
"-b"
,
"--batch_size"
,
default
=
128
,
type
=
int
,
help
=
"batch size"
)
parser
.
add_argument
(
"-n"
,
"--num_devices"
,
default
=
4
,
type
=
int
,
help
=
"number of devices"
)
"-n"
,
"--num_devices"
,
default
=
1
,
type
=
int
,
help
=
"number of devices"
)
parser
.
add_argument
(
"-r"
,
"--resume"
,
...
...
mnist2.py
已删除
100644 → 0
浏览文件 @
44291186
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
contextlib
import
os
import
numpy
as
np
import
paddle
from
paddle
import
fluid
from
paddle.fluid.optimizer
import
Momentum
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
Linear
from
model
import
Model
,
CrossEntropy
,
Input
class
SimpleImgConvPool
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
pool_type
=
'max'
,
global_pooling
=
False
,
conv_stride
=
1
,
conv_padding
=
0
,
conv_dilation
=
1
,
conv_groups
=
None
,
act
=
None
,
use_cudnn
=
False
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
(
'SimpleConv'
)
self
.
_conv2d
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
conv_stride
,
padding
=
conv_padding
,
dilation
=
conv_dilation
,
groups
=
conv_groups
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
,
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv2d
(
inputs
)
x
=
self
.
_pool2d
(
x
)
return
x
class
MNIST
(
Model
):
def
__init__
(
self
,
inputs
=
None
):
super
(
MNIST
,
self
).
__init__
(
inputs
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
Linear
(
800
,
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)),
act
=
"softmax"
)
def
forward
(
self
,
inputs
,
label
):
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
x
=
self
.
_simple_img_conv_pool_2
(
x
)
x
=
fluid
.
layers
.
flatten
(
x
,
axis
=
1
)
x
=
self
.
_fc
(
x
)
loss
=
fluid
.
layers
.
cross_entropy
(
x
,
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
self
.
set_loss
(
loss
)
return
x
,
loss
def
accuracy
(
pred
,
label
,
topk
=
(
1
,
)):
maxk
=
max
(
topk
)
pred
=
np
.
argsort
(
pred
)[:,
::
-
1
][:,
:
maxk
]
correct
=
(
pred
==
np
.
repeat
(
label
,
maxk
,
1
))
batch_size
=
label
.
shape
[
0
]
res
=
[]
for
k
in
topk
:
correct_k
=
correct
[:,
:
k
].
sum
()
res
.
append
(
100.0
*
correct_k
/
batch_size
)
return
res
def
main
():
@
contextlib
.
contextmanager
def
null_guard
():
yield
guard
=
fluid
.
dygraph
.
guard
()
if
FLAGS
.
dynamic
else
null_guard
()
if
not
os
.
path
.
exists
(
'mnist_checkpoints'
):
os
.
mkdir
(
'mnist_checkpoints'
)
train_loader
=
fluid
.
io
.
xmap_readers
(
lambda
b
:
[
np
.
array
([
x
[
0
]
for
x
in
b
]).
reshape
(
-
1
,
1
,
28
,
28
),
np
.
array
([
x
[
1
]
for
x
in
b
]).
reshape
(
-
1
,
1
)],
paddle
.
batch
(
fluid
.
io
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
6e4
),
batch_size
=
FLAGS
.
batch_size
,
drop_last
=
True
),
1
,
1
)
val_loader
=
fluid
.
io
.
xmap_readers
(
lambda
b
:
[
np
.
array
([
x
[
0
]
for
x
in
b
]).
reshape
(
-
1
,
1
,
28
,
28
),
np
.
array
([
x
[
1
]
for
x
in
b
]).
reshape
(
-
1
,
1
)],
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
FLAGS
.
batch_size
,
drop_last
=
True
),
1
,
1
)
device_ids
=
list
(
range
(
FLAGS
.
num_devices
))
add_loss
=
True
with
guard
:
inputs
=
[
Input
(
[
None
,
1
,
28
,
28
],
'float32'
,
name
=
'image'
),
Input
(
[
None
,
1
],
'int64'
,
name
=
'label'
),
]
model
=
MNIST
(
inputs
)
optim
=
Momentum
(
learning_rate
=
FLAGS
.
lr
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
model
.
prepare
(
optim
)
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
for
e
in
range
(
FLAGS
.
epoch
):
train_loss
=
0.0
train_acc
=
0.0
val_loss
=
0.0
val_acc
=
0.0
print
(
"======== train epoch {} ========"
.
format
(
e
))
for
idx
,
batch
in
enumerate
(
train_loader
()):
outputs
,
losses
=
model
.
train
(
batch
,
device
=
'gpu'
,
device_ids
=
device_ids
)
acc
=
accuracy
(
outputs
[
0
],
batch
[
1
])[
0
]
train_loss
+=
np
.
sum
(
losses
)
train_acc
+=
acc
if
idx
%
10
==
0
:
print
(
"{:04d}: loss {:0.3f} top1: {:0.3f}%"
.
format
(
idx
,
train_loss
/
(
idx
+
1
),
train_acc
/
(
idx
+
1
)))
print
(
"======== eval epoch {} ========"
.
format
(
e
))
for
idx
,
batch
in
enumerate
(
val_loader
()):
outputs
,
losses
=
model
.
eval
(
batch
,
device
=
'gpu'
,
device_ids
=
device_ids
)
acc
=
accuracy
(
outputs
[
0
],
batch
[
1
])[
0
]
val_loss
+=
np
.
sum
(
losses
)
val_acc
+=
acc
if
idx
%
10
==
0
:
print
(
"{:04d}: loss {:0.3f} top1: {:0.3f}%"
.
format
(
idx
,
val_loss
/
(
idx
+
1
),
val_acc
/
(
idx
+
1
)))
model
.
save
(
'mnist_checkpoints/{:02d}'
.
format
(
e
))
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
"CNN training on MNIST"
)
parser
.
add_argument
(
"-d"
,
"--dynamic"
,
action
=
'store_true'
,
help
=
"enable dygraph mode"
)
parser
.
add_argument
(
"-e"
,
"--epoch"
,
default
=
100
,
type
=
int
,
help
=
"number of epoch"
)
parser
.
add_argument
(
'--lr'
,
'--learning-rate'
,
default
=
1e-3
,
type
=
float
,
metavar
=
'LR'
,
help
=
'initial learning rate'
)
parser
.
add_argument
(
"-b"
,
"--batch_size"
,
default
=
128
,
type
=
int
,
help
=
"batch size"
)
parser
.
add_argument
(
"-n"
,
"--num_devices"
,
default
=
4
,
type
=
int
,
help
=
"number of devices"
)
parser
.
add_argument
(
"-r"
,
"--resume"
,
default
=
None
,
type
=
str
,
help
=
"checkpoint path to resume"
)
FLAGS
=
parser
.
parse_args
()
main
()
model.py
浏览文件 @
03b7e92f
...
...
@@ -30,16 +30,6 @@ from paddle.fluid.dygraph.base import to_variable
__all__
=
[
'Model'
,
'Loss'
,
'CrossEntropy'
,
'Input'
]
class
Input
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
shape
=
None
,
dtype
=
None
,
name
=
None
):
self
.
shape
=
shape
self
.
dtype
=
dtype
self
.
name
=
name
def
forward
(
self
):
return
fluid
.
data
(
self
.
name
,
shape
=
self
.
shape
,
dtype
=
self
.
dtype
)
def
to_list
(
value
):
if
value
is
None
:
return
value
...
...
@@ -56,6 +46,23 @@ def to_numpy(var):
return
np
.
array
(
t
)
def
extract_args
(
func
):
if
hasattr
(
inspect
,
'getfullargspec'
):
return
inspect
.
getfullargspec
(
func
)[
0
]
else
:
return
inspect
.
getargspec
(
func
)[
0
]
class
Input
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
shape
=
None
,
dtype
=
None
,
name
=
None
):
self
.
shape
=
shape
self
.
dtype
=
dtype
self
.
name
=
name
def
forward
(
self
):
return
fluid
.
data
(
self
.
name
,
shape
=
self
.
shape
,
dtype
=
self
.
dtype
)
class
Loss
(
object
):
def
__init__
(
self
,
average
=
True
):
super
(
Loss
,
self
).
__init__
()
...
...
@@ -231,25 +238,28 @@ class StaticGraphAdapter(object):
t
.
set
(
ndarray
,
place
)
def
_run
(
self
,
inputs
,
labels
=
None
,
device
=
'CPU'
,
device_ids
=
None
):
inputs
=
to_list
(
inputs
)
if
labels
is
not
None
:
labels
=
to_list
(
labels
)
assert
len
(
inputs
)
==
len
(
self
.
model
.
_inputs
),
"number of inputs"
\
+
" does not match number of arguments of `forward` method"
if
self
.
_progs
.
get
(
self
.
mode
,
None
)
is
None
:
if
self
.
model
.
_inputs
is
None
:
raise
ValueError
(
"The inputs of Model must be not None."
)
self
.
_input_vars
=
[
k
.
forward
()
for
k
in
to_list
(
self
.
model
.
_inputs
)
]
self
.
_make_program
(
self
.
_input_vars
)
if
isinstance
(
self
.
model
.
_inputs
,
dict
):
ins
=
[
self
.
model
.
_inputs
[
n
]
\
for
n
in
extract_args
(
self
.
model
.
forward
)
if
n
!=
'self'
]
else
:
ins
=
self
.
model
.
_inputs
self
.
_input_vars
[
self
.
mode
]
=
[
k
.
forward
()
for
k
in
to_list
(
ins
)]
self
.
_make_program
(
self
.
_input_vars
[
self
.
mode
])
compiled_prog
=
self
.
_compile_and_initialize
(
self
.
_progs
[
self
.
mode
],
device
,
device_ids
)
inputs
=
to_list
(
inputs
)
if
labels
is
not
None
:
labels
=
to_list
(
labels
)
assert
len
(
inputs
)
==
len
(
self
.
_input_vars
[
self
.
mode
]),
"number of inputs"
\
+
" does not match number of arguments of `forward` method"
feed
=
{}
input_names
=
[
v
.
name
for
v
in
self
.
_input_vars
]
input_names
=
[
v
.
name
for
v
in
self
.
_input_vars
[
self
.
mode
]
]
for
idx
,
n
in
enumerate
(
input_names
):
# train and test may take different arguments
if
inputs
[
idx
]
is
not
None
:
...
...
@@ -261,7 +271,7 @@ class StaticGraphAdapter(object):
endpoints
=
self
.
_endpoints
[
self
.
mode
]
fetch_list
=
endpoints
[
'output'
]
if
'loss'
in
endpoints
:
fetch_list
+=
endpoints
[
'loss'
]
fetch_list
=
endpoints
[
'output'
]
+
endpoints
[
'loss'
]
num_output
=
len
(
endpoints
[
'output'
])
out
=
self
.
_executor
.
run
(
compiled_prog
,
feed
=
feed
,
...
...
@@ -296,19 +306,10 @@ class StaticGraphAdapter(object):
}
def
_get_loss
(
self
,
outputs
):
if
self
.
model
.
_loss_function
and
self
.
model
.
_loss
:
raise
ValueError
(
"Do not set loss by model.set_loss() and "
"loss_function in model.prepare() at the same time."
)
if
self
.
model
.
_loss_function
is
not
None
:
if
self
.
model
.
_labels
is
None
:
raise
ValueError
(
"The labels of Model must be not None."
)
label_vars
=
[
k
.
forward
()
for
k
in
to_list
(
self
.
model
.
_labels
)]
self
.
_label_vars
[
self
.
mode
]
=
label_vars
losses
=
self
.
model
.
_loss_function
(
outputs
,
label_vars
)
else
:
assert
self
.
model
.
_loss
losses
=
to_list
(
self
.
model
.
_loss
)
assert
self
.
model
.
_loss_function
label_vars
=
[
k
.
forward
()
for
k
in
to_list
(
self
.
model
.
_labels
)]
self
.
_label_vars
[
self
.
mode
]
=
label_vars
losses
=
self
.
model
.
_loss_function
(
outputs
,
label_vars
)
return
losses
def
_compile_and_initialize
(
self
,
prog
,
device
=
'CPU'
,
device_ids
=
None
):
...
...
@@ -415,14 +416,8 @@ class DynamicGraphAdapter(object):
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)]
def
_get_loss
(
self
,
outputs
,
labels
):
if
self
.
model
.
_loss_function
and
self
.
model
.
_loss
:
raise
ValueError
(
"Do not set loss by model.set_loss() and "
"loss_function in model.prepare() at the same time."
)
if
self
.
model
.
_loss_function
is
not
None
:
return
self
.
model
.
_loss_function
(
outputs
,
labels
)
else
:
return
to_list
(
self
.
model
.
_loss
)
assert
self
.
model
.
_loss_function
return
self
.
model
.
_loss_function
(
outputs
,
labels
)
def
parameters
(
self
,
*
args
,
**
kwargs
):
return
super
(
Model
,
self
.
model
).
parameters
(
*
args
,
**
kwargs
)
...
...
@@ -447,23 +442,13 @@ class DynamicGraphAdapter(object):
class
Model
(
fluid
.
dygraph
.
Layer
):
"""
FIXME: add more comments and usage
Args:
inputs (Input|list of Input|None): inputs, entry points of network,
could be a Input layer of lits of Input layers, or None.
For static graph, inputs must be set. For dynamic graph, it could
be None.
labels (Input|list of Input|None): labels, entry points of network,
could be a Input layer of lits of Input layers, or None.
For static graph, if set loss_function in Model.prepare(), it
must be set. Otherwise, it could be None.
"""
def
__init__
(
self
,
inputs
=
None
,
labels
=
None
):
def
__init__
(
self
):
super
(
Model
,
self
).
__init__
(
self
.
__class__
.
__name__
)
self
.
mode
=
'train'
self
.
_inputs
=
to_list
(
inputs
)
self
.
_labels
=
to_list
(
labels
)
self
.
_inputs
=
None
self
.
_labels
=
None
self
.
_loss_function
=
None
self
.
_loss_weights
=
None
self
.
_loss
=
None
...
...
@@ -488,22 +473,33 @@ class Model(fluid.dygraph.Layer):
def
load
(
self
,
*
args
,
**
kwargs
):
return
self
.
_adapter
.
load
(
*
args
,
**
kwargs
)
def
prepare
(
self
,
optimizer
,
loss_function
=
None
):
def
prepare
(
self
,
optimizer
,
loss_function
=
None
,
inputs
=
None
,
labels
=
None
):
"""
FIXME: add comments
Args:
inputs (Input|list|dict|None): inputs, entry points of network,
could be a Input layer, or lits of Input layers, or dict (name: ), or None.
For static graph, inputs must be set. For dynamic graph, it could
be None.
labels (Input|list|dict|None): labels, entry points of network,
could be a Input layer or lits of Input layers, or None.
For static graph, if set loss_function in Model.prepare(), it
must be set. Otherwise, it could be None.
"""
self
.
_optimizer
=
optimizer
if
loss_function
:
if
not
isinstance
(
loss_function
,
Loss
):
raise
TypeError
(
"'loss_function' must be sub classes of 'Loss'"
)
self
.
_loss_function
=
loss_function
if
not
in_dygraph_mode
():
if
not
isinstance
(
inputs
,
(
list
,
dict
,
Input
)):
raise
TypeError
(
"'inputs' must be list or dict in static graph mode"
)
if
loss_function
and
not
isinstance
(
labels
,
(
list
,
Input
)):
raise
TypeError
(
"'labels' must be list in static graph mode"
)
self
.
_inputs
=
inputs
self
.
_labels
=
labels
def
parameters
(
self
,
*
args
,
**
kwargs
):
return
self
.
_adapter
.
parameters
(
*
args
,
**
kwargs
)
def
set_loss
(
self
,
loss
):
if
loss
and
self
.
_loss_function
:
raise
ValueError
(
"Do not set loss by model.set_loss() and "
"loss_function in model.prepare() at the same time."
)
if
not
isinstance
(
loss
,
(
Variable
,
fluid
.
core
.
VarBase
)):
raise
TypeError
(
"loss type should be a Variable or VarBase."
)
self
.
_loss
=
loss
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录