transforms.py 22.0 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import cv2
import traceback
import numpy as np

import logging
logger = logging.getLogger(__name__)

__all__ = ['ColorDistort', 'RandomExpand', 'RandomCrop', 'RandomFlip',
           'NormalizeBox', 'PadBox', 'RandomShape', 'NormalizeImage',
           'BboxXYXY2XYWH', 'ResizeImage', 'Compose', 'BatchCompose']


class Compose(object):
    def __init__(self, transforms=[]):
        self.transforms = transforms

    def __call__(self, *data):
        for f in self.transforms:
            try:
                data = f(*data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.info("fail to perform transform [{}] with error: "
                        "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data


class BatchCompose(object):
    def __init__(self, transforms=[]):
        self.transforms = transforms

    def __call__(self, data):
        for f in self.transforms:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.info("fail to perform batch transform [{}] with error: "
                        "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e

        # sample list to batch data
        batch = list(zip(*data))

        return batch


class ColorDistort(object):
    """Random color distortion.

    Args:
        hue (list): hue settings.
            in [lower, upper, probability] format.
        saturation (list): saturation settings.
            in [lower, upper, probability] format.
        contrast (list): contrast settings.
            in [lower, upper, probability] format.
        brightness (list): brightness settings.
            in [lower, upper, probability] format.
        random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
            order.
    """

    def __init__(self,
                 hue=[-18, 18, 0.5],
                 saturation=[0.5, 1.5, 0.5],
                 contrast=[0.5, 1.5, 0.5],
                 brightness=[0.5, 1.5, 0.5],
                 random_apply=True):
        self.hue = hue
        self.saturation = saturation
        self.contrast = contrast
        self.brightness = brightness
        self.random_apply = random_apply

    def apply_hue(self, img):
        low, high, prob = self.hue
        if np.random.uniform(0., 1.) < prob:
            return img

        img = img.astype(np.float32)

        # XXX works, but result differ from HSV version
        delta = np.random.uniform(low, high)
        u = np.cos(delta * np.pi)
        w = np.sin(delta * np.pi)
        bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
        tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
                         [0.211, -0.523, 0.311]])
        ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
                          [1.0, -1.107, 1.705]])
        t = np.dot(np.dot(ityiq, bt), tyiq).T
        img = np.dot(img, t)
        return img

    def apply_saturation(self, img):
        low, high, prob = self.saturation
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)

        img = img.astype(np.float32)
        gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
        gray = gray.sum(axis=2, keepdims=True)
        gray *= (1.0 - delta)
        img *= delta
        img += gray
        return img

    def apply_contrast(self, img):
        low, high, prob = self.contrast
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)

        img = img.astype(np.float32)
        img *= delta
        return img

    def apply_brightness(self, img):
        low, high, prob = self.brightness
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)

        img = img.astype(np.float32)
        img += delta
        return img

    def __call__(self, im_info, im, gt_bbox, gt_class, gt_score):
        if self.random_apply:
            distortions = np.random.permutation([
                self.apply_brightness, self.apply_contrast,
                self.apply_saturation, self.apply_hue
            ])
            for func in distortions:
                im = func(im)
            return [im_info, im, gt_bbox, gt_class, gt_score]

        im = self.apply_brightness(im)

        if np.random.randint(0, 2):
            im = self.apply_contrast(im)
            im = self.apply_saturation(im)
            im = self.apply_hue(im)
        else:
            im = self.apply_saturation(im)
            im = self.apply_hue(im)
            im = self.apply_contrast(im)
        return [im_info, im, gt_bbox, gt_class, gt_score]


class RandomExpand(object):
    """Random expand the canvas.

    Args:
        ratio (float): maximum expansion ratio.
        prob (float): probability to expand.
        fill_value (list): color value used to fill the canvas. in RGB order.
    """

    def __init__(self, ratio=4., prob=0.5, fill_value=[123.675, 116.28, 103.53]):
        assert ratio > 1.01, "expand ratio must be larger than 1.01"
        self.ratio = ratio
        self.prob = prob
        self.fill_value = fill_value

    def __call__(self, im_info, im, gt_bbox, gt_class, gt_score):
        if np.random.uniform(0., 1.) < self.prob:
            return [im_info, im, gt_bbox, gt_class, gt_score]

        height, width, _ = im.shape
        expand_ratio = np.random.uniform(1., self.ratio)
        h = int(height * expand_ratio)
        w = int(width * expand_ratio)
        if not h > height or not w > width:
            return [im_info, im, gt_bbox, gt_class, gt_score]
        y = np.random.randint(0, h - height)
        x = np.random.randint(0, w - width)
        canvas = np.ones((h, w, 3), dtype=np.uint8)
        canvas *= np.array(self.fill_value, dtype=np.uint8)
        canvas[y:y + height, x:x + width, :] = im.astype(np.uint8)

        gt_bbox += np.array([x, y, x, y], dtype=np.float32)

        return [im_info, canvas, gt_bbox, gt_class, gt_score]


class RandomCrop():
    """Random crop image and bboxes.

    Args:
        aspect_ratio (list): aspect ratio of cropped region.
            in [min, max] format.
        thresholds (list): iou thresholds for decide a valid bbox crop.
        scaling (list): ratio between a cropped region and the original image.
             in [min, max] format.
        num_attempts (int): number of tries before giving up.
        allow_no_crop (bool): allow return without actually cropping them.
        cover_all_box (bool): ensure all bboxes are covered in the final crop.
    """

    def __init__(self,
                 aspect_ratio=[.5, 2.],
                 thresholds=[.0, .1, .3, .5, .7, .9],
                 scaling=[.3, 1.],
                 num_attempts=50,
                 allow_no_crop=True,
                 cover_all_box=False):
        self.aspect_ratio = aspect_ratio
        self.thresholds = thresholds
        self.scaling = scaling
        self.num_attempts = num_attempts
        self.allow_no_crop = allow_no_crop
        self.cover_all_box = cover_all_box

    def __call__(self, im_info, im, gt_bbox, gt_class, gt_score):
        if len(gt_bbox) == 0:
            return [im_info, im, gt_bbox, gt_class, gt_score]

        # NOTE Original method attempts to generate one candidate for each
        # threshold then randomly sample one from the resulting list.
        # Here a short circuit approach is taken, i.e., randomly choose a
        # threshold and attempt to find a valid crop, and simply return the
        # first one found.
        # The probability is not exactly the same, kinda resembling the
        # "Monty Hall" problem. Actually carrying out the attempts will affect
        # observability (just like opening doors in the "Monty Hall" game).
        thresholds = list(self.thresholds)
        if self.allow_no_crop:
            thresholds.append('no_crop')
        np.random.shuffle(thresholds)

        for thresh in thresholds:
            if thresh == 'no_crop':
                return [im_info, im, gt_bbox, gt_class, gt_score]

            h, w, _ = im.shape
            found = False
            for i in range(self.num_attempts):
                scale = np.random.uniform(*self.scaling)
                min_ar, max_ar = self.aspect_ratio
                aspect_ratio = np.random.uniform(
                    max(min_ar, scale**2), min(max_ar, scale**-2))
                crop_h = int(h * scale / np.sqrt(aspect_ratio))
                crop_w = int(w * scale * np.sqrt(aspect_ratio))
                crop_y = np.random.randint(0, h - crop_h)
                crop_x = np.random.randint(0, w - crop_w)
                crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
                iou = self._iou_matrix(
                    gt_bbox, np.array(
                        [crop_box], dtype=np.float32))
                if iou.max() < thresh:
                    continue

                if self.cover_all_box and iou.min() < thresh:
                    continue

                cropped_box, valid_ids = self._crop_box_with_center_constraint(
                    gt_bbox, np.array(
                        crop_box, dtype=np.float32))
                if valid_ids.size > 0:
                    found = True
                    break

            if found:
                im = self._crop_image(im, crop_box)
                gt_bbox = np.take(cropped_box, valid_ids, axis=0)
                gt_class = np.take(gt_class, valid_ids, axis=0)
                gt_score = np.take(gt_score, valid_ids, axis=0)
                return [im_info, im, gt_bbox, gt_class, gt_score]

        return [im_info, im, gt_bbox, gt_class, gt_score]

    def _iou_matrix(self, a, b):
        tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
        br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

        area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
        area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
        area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
        area_o = (area_a[:, np.newaxis] + area_b - area_i)
        return area_i / (area_o + 1e-10)

    def _crop_box_with_center_constraint(self, box, crop):
        cropped_box = box.copy()

        cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
        cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
        cropped_box[:, :2] -= crop[:2]
        cropped_box[:, 2:] -= crop[:2]

        centers = (box[:, :2] + box[:, 2:]) / 2
        valid = np.logical_and(crop[:2] <= centers,
                               centers < crop[2:]).all(axis=1)
        valid = np.logical_and(
            valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))

        return cropped_box, np.where(valid)[0]

    def _crop_image(self, img, crop):
        x1, y1, x2, y2 = crop
        return img[y1:y2, x1:x2, :]


class RandomFlip():
    def __init__(self, prob=0.5, is_normalized=False):
        """
        Args:
            prob (float): the probability of flipping image
            is_normalized (bool): whether the bbox scale to [0,1]
        """
        self.prob = prob
        self.is_normalized = is_normalized
        if not (isinstance(self.prob, float) and
                isinstance(self.is_normalized, bool)):
            raise TypeError("{}: input type is invalid.".format(self))

    def __call__(self, im_info, im, gt_bbox, gt_class, gt_score):
        """Filp the image and bounding box.
        Operators:
            1. Flip the image numpy.
            2. Transform the bboxes' x coordinates.
              (Must judge whether the coordinates are normalized!)
        """

        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image is not a numpy array.".format(self))
        if len(im.shape) != 3:
            raise ImageError("{}: image is not 3-dimensional.".format(self))
        height, width, _ = im.shape
        if np.random.uniform(0, 1) < self.prob:
            im = im[:, ::-1, :]
            if gt_bbox.shape[0] > 0:
                oldx1 = gt_bbox[:, 0].copy()
                oldx2 = gt_bbox[:, 2].copy()
                if self.is_normalized:
                    gt_bbox[:, 0] = 1 - oldx2
                    gt_bbox[:, 2] = 1 - oldx1
                else:
                    gt_bbox[:, 0] = width - oldx2 - 1
                    gt_bbox[:, 2] = width - oldx1 - 1
                if gt_bbox.shape[0] != 0 and (
                        gt_bbox[:, 2] < gt_bbox[:, 0]).all():
                    m = "{}: invalid box, x2 should be greater than x1".format(
                        self)
                    raise ValueError(m)
        return [im_info, im, gt_bbox, gt_class, gt_score]


class NormalizeBox(object):
    """Transform the bounding box's coornidates to [0,1]."""

    def __call__(self, im_info, im, gt_bbox, gt_class, gt_score):
        height, width, _ = im.shape
        for i in range(gt_bbox.shape[0]):
            gt_bbox[i][0] = gt_bbox[i][0] / width
            gt_bbox[i][1] = gt_bbox[i][1] / height
            gt_bbox[i][2] = gt_bbox[i][2] / width
            gt_bbox[i][3] = gt_bbox[i][3] / height
        return [im_info, im, gt_bbox, gt_class, gt_score]


class PadBox(object):
    def __init__(self, num_max_boxes=50):
        """
        Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
        Args:
            num_max_boxes (int): the max number of bboxes
        """
        self.num_max_boxes = num_max_boxes

    def __call__(self, im_info, im, gt_bbox, gt_class, gt_score):
        gt_num = min(self.num_max_boxes, len(gt_bbox))
        num_max = self.num_max_boxes

        pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
        if gt_num > 0:
            pad_bbox[:gt_num, :] = gt_bbox[:gt_num, :]
        gt_bbox = pad_bbox

        pad_class = np.zeros((num_max), dtype=np.int32)
        if gt_num > 0:
            pad_class[:gt_num] = gt_class[:gt_num, 0]
        gt_class = pad_class

        pad_score = np.zeros((num_max), dtype=np.float32)
        if gt_num > 0:
            pad_score[:gt_num] = gt_score[:gt_num, 0]
        gt_score = pad_score
        return [im_info, im, gt_bbox, gt_class, gt_score]


class BboxXYXY2XYWH(object):
    """
    Convert bbox XYXY format to XYWH format.
    """

    def __call__(self, im_info, im, gt_bbox, gt_class, gt_score):
        gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
        gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
        return [im_info, im, gt_bbox, gt_class, gt_score]


class RandomShape(object):
    """
    Randomly reshape a batch. If random_inter is True, also randomly
    select one an interpolation algorithm [cv2.INTER_NEAREST, cv2.INTER_LINEAR,
    cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]. If random_inter is
    False, use cv2.INTER_NEAREST.

    Args:
        sizes (list): list of int, random choose a size from these
        random_inter (bool): whether to randomly interpolation, defalut true.
    """

    def __init__(self,
                 sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
                 random_inter=True):
        self.sizes = sizes
        self.random_inter = random_inter
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
        ] if random_inter else []

    def __call__(self, samples):
        shape = np.random.choice(self.sizes)
        method = np.random.choice(self.interps) if self.random_inter \
            else cv2.INTER_NEAREST
        for i in range(len(samples)):
            im = samples[i][1]
            h, w = im.shape[:2]
            scale_x = float(shape) / w
            scale_y = float(shape) / h
            im = cv2.resize(
                im, None, None, fx=scale_x, fy=scale_y, interpolation=method)
            samples[i][1] = im
        return samples


class NormalizeImage(object):
    def __init__(self,
                 mean=[0.485, 0.456, 0.406],
                 std=[0.229, 0.224, 0.225],
                 scale=True,
                 channel_first=True):
        """
        Args:
            mean (list): the pixel mean
            std (list): the pixel variance
            scale (bool):  whether scale image to [0, 1]
            channel_first (bool):  whehter change [h, w, c] to [c, h, w]
        """
        self.mean = mean
        self.std = std
        self.scale = scale
        self.channel_first = channel_first
        if not (isinstance(self.mean, list) and isinstance(self.std, list) and
                isinstance(self.scale, bool)):
            raise TypeError("{}: input type is invalid.".format(self))
        from functools import reduce
        if reduce(lambda x, y: x * y, self.std) == 0:
            raise ValueError('{}: std is invalid!'.format(self))

    def __call__(self, samples):
        """Normalize the image.
        Operators:
            1. (optional) Scale the image to [0,1]
            2. Each pixel minus mean and is divided by std
            3. (optional) permute channel
        """
        for i in range(len(samples)):
            im = samples[i][1]
            im = im.astype(np.float32, copy=False)
            mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
            std = np.array(self.std)[np.newaxis, np.newaxis, :]
            if self.scale:
                im = im / 255.0
            im -= mean
            im /= std
            if self.channel_first:
                im = im.transpose((2, 0, 1))
            samples[i][1] = im
        return samples


def _iou_matrix(a, b):
    tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
    br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
    area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
    area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
    area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
    area_o = (area_a[:, np.newaxis] + area_b - area_i)
    return area_i / (area_o + 1e-10)


def _crop_box_with_center_constraint(box, crop):
    cropped_box = box.copy()
    cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
    cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
    cropped_box[:, :2] -= crop[:2]
    cropped_box[:, 2:] -= crop[:2]
    centers = (box[:, :2] + box[:, 2:]) / 2
    valid = np.logical_and(
        crop[:2] <= centers, centers < crop[2:]).all(axis=1)
    valid = np.logical_and(
        valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
    return cropped_box, np.where(valid)[0]


def random_crop(inputs):
    aspect_ratios = [.5, 2.]
    thresholds = [.0, .1, .3, .5, .7, .9]
    scaling = [.3, 1.]

    img, img_ids, gt_box, gt_label = inputs
    h, w = img.shape[:2]

    if len(gt_box) == 0:
        return inputs

    np.random.shuffle(thresholds)
    for thresh in thresholds:
        found = False
        for i in range(50):
            scale = np.random.uniform(*scaling)
            min_ar, max_ar = aspect_ratios
            ar = np.random.uniform(max(min_ar, scale**2),
                                   min(max_ar, scale**-2))
            crop_h = int(h * scale / np.sqrt(ar))
            crop_w = int(w * scale * np.sqrt(ar))
            crop_y = np.random.randint(0, h - crop_h)
            crop_x = np.random.randint(0, w - crop_w)
            crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
            iou = _iou_matrix(gt_box, np.array([crop_box], dtype=np.float32))
            if iou.max() < thresh:
                continue

            cropped_box, valid_ids = _crop_box_with_center_constraint(
                gt_box, np.array(crop_box, dtype=np.float32))
            if valid_ids.size > 0:
                found = True
                break

        if found:
            x1, y1, x2, y2 = crop_box
            img = img[y1:y2, x1:x2, :]
            gt_box = np.take(cropped_box, valid_ids, axis=0)
            gt_label = np.take(gt_label, valid_ids, axis=0)
            return img, img_ids, gt_box, gt_label

        return inputs


class ResizeImage(object):
    def __init__(self,
                 target_size=0,
                 interp=cv2.INTER_CUBIC):
        """
        Rescale image to the specified target size.
        If target_size is list, selected a scale randomly as the specified
        target size.

        Args:
            target_size (int|list): the target size of image's short side,
                multi-scale training is adopted when type is list.
            interp (int): the interpolation method
        """
        self.interp = int(interp)
        if not (isinstance(target_size, int) or isinstance(target_size, list)):
            raise TypeError(
                "Type of target_size is invalid. Must be Integer or List, now is {}".
                format(type(target_size)))
        self.target_size = target_size

    def __call__(self, im_info, im, gt_bbox, gt_class, gt_score):
        """ Resize the image numpy.
        """
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))
        im_shape = im.shape
        im_scale_x = float(self.target_size) / float(im_shape[1])
        im_scale_y = float(self.target_size) / float(im_shape[0])
        resize_w = self.target_size 
        resize_h = self.target_size 

        im = cv2.resize(
            im,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)

        return [im_info, im, gt_bbox, gt_class, gt_score]