bmn_metric.py 5.3 KB
Newer Older
H
huangjun12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import numpy as np
import pandas as pd
import os
import sys
import json

sys.path.append('../')

23
from paddle.metric import Metric
H
huangjun12 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from bmn_utils import boundary_choose, bmn_post_processing


class BmnMetric(Metric):
    """
    only support update with batch_size=1
    """

    def __init__(self, cfg, mode):
        super(BmnMetric, self).__init__()
        self.cfg = cfg
        self.mode = mode
        #get video_dict and video_list
        if self.mode == 'test':
            self.get_test_dataset_dict()
H
huangjun12 已提交
39 40 41 42
            if not os.path.isdir(self.cfg.TEST.output_path):
                os.makedirs(self.cfg.TEST.output_path)
            if not os.path.isdir(self.cfg.TEST.result_path):
                os.makedirs(self.cfg.TEST.result_path)
H
huangjun12 已提交
43 44
        elif self.mode == 'infer':
            self.get_infer_dataset_dict()
H
huangjun12 已提交
45 46 47 48 49
            if not os.path.isdir(self.cfg.INFER.output_path):
                os.makedirs(self.cfg.INFER.output_path)
            if not os.path.isdir(self.cfg.INFER.result_path):
                os.makedirs(self.cfg.INFER.result_path)

50
    def compute(self, *args):
D
dengkaipeng 已提交
51 52 53 54 55 56 57 58
        if self.mode == 'test':
            # only extract pred_bm, pred_start, pred_en from outputs
            # and video_index from label here
            pred_bm, pred_start, pred_en, _, _, _, video_index = args
        else:
            # in infer mode, labels only contains video_index
            pred_bm, pred_start, pred_en, video_index = args
        return pred_bm, pred_start, pred_en, video_index
H
huangjun12 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    def update(self, pred_bm, pred_start, pred_end, fid):
        # generate proposals
        pred_start = pred_start[0]
        pred_end = pred_end[0]
        fid = fid[0]

        if self.mode == 'infer':
            output_path = self.cfg.INFER.output_path
        else:
            output_path = self.cfg.TEST.output_path
        tscale = self.cfg.MODEL.tscale
        dscale = self.cfg.MODEL.dscale
        snippet_xmins = [1.0 / tscale * i for i in range(tscale)]
        snippet_xmaxs = [1.0 / tscale * i for i in range(1, tscale + 1)]
        cols = ["xmin", "xmax", "score"]

        video_name = self.video_list[fid]
        pred_bm = pred_bm[0, 0, :, :] * pred_bm[0, 1, :, :]
        start_mask = boundary_choose(pred_start)
        start_mask[0] = 1.
        end_mask = boundary_choose(pred_end)
        end_mask[-1] = 1.
        score_vector_list = []
        for idx in range(dscale):
            for jdx in range(tscale):
                start_index = jdx
                end_index = start_index + idx
                if end_index < tscale and start_mask[
                        start_index] == 1 and end_mask[end_index] == 1:
                    xmin = snippet_xmins[start_index]
                    xmax = snippet_xmaxs[end_index]
                    xmin_score = pred_start[start_index]
                    xmax_score = pred_end[end_index]
                    bm_score = pred_bm[idx, jdx]
                    conf_score = xmin_score * xmax_score * bm_score
                    score_vector_list.append([xmin, xmax, conf_score])

        score_vector_list = np.stack(score_vector_list)
        video_df = pd.DataFrame(score_vector_list, columns=cols)
        video_df.to_csv(
            os.path.join(output_path, "%s.csv" % video_name), index=False)

        return 0  # result has saved in output path

    def accumulate(self):
        return 'post_processing is required...'  # required method

    def reset(self):
        print("Post_processing....This may take a while")
        if self.mode == 'test':
            bmn_post_processing(self.video_dict, self.cfg.TEST.subset,
                                self.cfg.TEST.output_path,
                                self.cfg.TEST.result_path)
        elif self.mode == 'infer':
            bmn_post_processing(self.video_dict, self.cfg.INFER.subset,
                                self.cfg.INFER.output_path,
                                self.cfg.INFER.result_path)

    def name(self):
        return 'bmn_metric'

    def get_test_dataset_dict(self):
        anno_file = self.cfg.MODEL.anno_file
        annos = json.load(open(anno_file))
        subset = self.cfg.TEST.subset
        self.video_dict = {}
        for video_name in annos.keys():
            video_subset = annos[video_name]["subset"]
            if subset in video_subset:
                self.video_dict[video_name] = annos[video_name]
        self.video_list = list(self.video_dict.keys())
        self.video_list.sort()

    def get_infer_dataset_dict(self):
        file_list = self.cfg.INFER.filelist
        annos = json.load(open(file_list))
        self.video_dict = {}
        for video_name in annos.keys():
            self.video_dict[video_name] = annos[video_name]
        self.video_list = list(self.video_dict.keys())
        self.video_list.sort()