kinetics_dataset.py 5.1 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import random
import numpy as np
from PIL import Image, ImageEnhance

try:
    import cPickle as pickle
    from cStringIO import StringIO
except ImportError:
    import pickle
    from io import BytesIO

from paddle.fluid.io import Dataset

import logging
logger = logging.getLogger(__name__)

__all__ = ['KineticsDataset']

D
dengkaipeng 已提交
36 37
KINETICS_CLASS_NUM = 400

D
dengkaipeng 已提交
38 39 40 41 42 43

class KineticsDataset(Dataset):
    """
    Kinetics dataset

    Args:
D
dengkaipeng 已提交
44 45 46 47 48 49 50 51 52 53 54 55
        file_list (str): path to file list
        pickle_dir (str): path to pickle file directory
        label_list (str): path to label_list file, if set None, the
            default class number 400 of kinetics dataset will be
            used. Default None
        mode (str): 'train' or 'val' mode, segmentation methods will
            be different in these 2 modes. Default 'train'
        seg_num (int): segment number to sample from each video.
            Default 8
        seg_len (int): frame number of each segment. Default 1
        transform (callable): transforms to perform on video samples,
            None for no transforms. Default None.
D
dengkaipeng 已提交
56 57 58
    """

    def __init__(self,
D
dengkaipeng 已提交
59
                 file_list,
D
dengkaipeng 已提交
60
                 pickle_dir,
D
dengkaipeng 已提交
61
                 label_list=None,
D
dengkaipeng 已提交
62 63 64 65
                 mode='train',
                 seg_num=8,
                 seg_len=1,
                 transform=None):
D
dengkaipeng 已提交
66 67 68
        assert os.path.isfile(file_list), \
                "file_list {} not a file".format(file_list)
        with open(file_list) as f:
D
dengkaipeng 已提交
69 70 71 72 73 74
            self.pickle_paths = [l.strip() for l in f]

        assert os.path.isdir(pickle_dir), \
                "pickle_dir {} not a directory".format(pickle_dir)
        self.pickle_dir = pickle_dir

D
dengkaipeng 已提交
75 76 77 78 79 80 81
        self.label_list = label_list
        if self.label_list is not None:
            assert os.path.isfile(self.label_list), \
                "label_list {} not a file".format(self.label_list)
            with open(self.label_list) as f:
                self.label_list = [int(l.strip()) for l in f]

D
dengkaipeng 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        assert mode in ['train', 'val'], \
                "mode can only be 'train' or 'val'"
        self.mode = mode

        self.seg_num = seg_num
        self.seg_len = seg_len
        self.transform = transform

    def __len__(self):
        return len(self.pickle_paths)

    def __getitem__(self, idx):
        pickle_path = os.path.join(self.pickle_dir, self.pickle_paths[idx])

        try:
            if six.PY2:
                data = pickle.load(open(pickle_path, 'rb'))
            else:
                data = pickle.load(open(pickle_path, 'rb'), encoding='bytes')

            vid, label, frames = data
            if len(frames) < 1:
                logger.error("{} contains no frame".format(pickle_path))
                sys.exit(-1)
        except Exception as e:
            logger.error("Load {} failed: {}".format(pickle_path, e))
            sys.exit(-1)

D
dengkaipeng 已提交
110 111
        if self.label_list is not None:
            label = self.label_list.index(label)
D
dengkaipeng 已提交
112 113 114 115 116 117
        imgs = self._video_loader(frames)

        if self.transform:
            imgs, label = self.transform(imgs, label)
        return imgs, np.array([label])

D
dengkaipeng 已提交
118 119 120 121 122
    @property
    def num_classes(self):
        return KINETICS_CLASS_NUM if self.label_list is None \
                else len(self.label_list)

D
dengkaipeng 已提交
123
    def _video_loader(self, frames):
D
dengkaipeng 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        videolen = len(frames)
        average_dur = int(videolen / self.seg_num)
        
        imgs = []
        for i in range(self.seg_num):
            idx = 0
            if self.mode == 'train':
                if average_dur >= self.seg_len:
                    idx = random.randint(0, average_dur - self.seg_len)
                    idx += i * average_dur
                elif average_dur >= 1:
                    idx += i * average_dur
                else:
                    idx = i
            else:
                if average_dur >= self.seg_len:
                    idx = (average_dur - self.seg_len) // 2
                    idx += i * average_dur
                elif average_dur >= 1:
                    idx += i * average_dur
                else:
                    idx = i
            
            for jj in range(idx, idx + self.seg_len):
                imgbuf = frames[int(jj % videolen)]
                img = self._imageloader(imgbuf)
                imgs.append(img)
        
        return imgs
D
dengkaipeng 已提交
153 154

    def _imageloader(self, buf):
D
dengkaipeng 已提交
155 156 157 158 159 160
        if isinstance(buf, str):
            img = Image.open(StringIO(buf))
        else:
            img = Image.open(BytesIO(buf))
        
        return img.convert('RGB')
D
dengkaipeng 已提交
161