modeling.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear

L
LielinJiang 已提交
20 21
from paddle.incubate.hapi.model import Model
from paddle.incubate.hapi.download import get_weights_path_from_url
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

__all__ = ["TSM_ResNet", "tsm_resnet50"]

# {num_layers: (url, md5)}
pretrain_infos = {
    50: ('https://paddlemodels.bj.bcebos.com/hapi/tsm_resnet50.pdparams',
         '5755dc538e422589f417f7b38d7cc3c7')
}


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=None,
            act=None,
            param_attr=fluid.param_attr.ParamAttr(),
            bias_attr=False)

        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=fluid.param_attr.ParamAttr(),
            bias_attr=fluid.param_attr.ParamAttr())

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 seg_num=8):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)
        self.shortcut = shortcut
        self.seg_num = seg_num
        self._num_channels_out = int(num_filters * 4)

    def forward(self, inputs):
        shifts = fluid.layers.temporal_shift(inputs, self.seg_num, 1.0 / 8)
        y = self.conv0(shifts)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv2, act="relu")
        return y


class TSM_ResNet(Model):
    """
    TSM network with ResNet as backbone

    Args:
        num_layers (int): ResNet layer number, only support 50 currently.
            Default 50.
        seg_num (int): segment number of each video sample. Default 8.
        num_classes (int): video class number. Default 400.
    """
L
LielinJiang 已提交
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139
    def __init__(self, num_layers=50, seg_num=8, num_classes=400):
        super(TSM_ResNet, self).__init__()

        self.layers = num_layers
        self.seg_num = seg_num
        self.class_dim = num_classes

        if self.layers == 50:
            depth = [3, 4, 6, 3]
        else:
            raise NotImplementedError
        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(
L
LielinJiang 已提交
140 141 142 143 144
            num_channels=3,
            num_filters=64,
            filter_size=7,
            stride=2,
            act='relu')
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.bottleneck_block_list = []
        num_channels = 64

        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        shortcut=shortcut,
                        seg_num=self.seg_num))
                num_channels = int(bottleneck_block._num_channels_out)
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True
        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = Linear(
            2048,
            self.class_dim,
            act="softmax",
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv)),
            bias_attr=fluid.param_attr.ParamAttr(
                learning_rate=2.0, regularizer=fluid.regularizer.L2Decay(0.)))

    def forward(self, inputs):
        y = fluid.layers.reshape(
            inputs, [-1, inputs.shape[2], inputs.shape[3], inputs.shape[4]])
        y = self.conv(y)
        y = self.pool2d_max(y)
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.dropout(y, dropout_prob=0.5)
        y = fluid.layers.reshape(y, [-1, self.seg_num, y.shape[1]])
        y = fluid.layers.reduce_mean(y, dim=1)
        y = fluid.layers.reshape(y, shape=[-1, 2048])
        y = self.out(y)
        return y


def _tsm_resnet(num_layers, seg_num=8, num_classes=400, pretrained=True):
    model = TSM_ResNet(num_layers, seg_num, num_classes)
    if pretrained:
        assert num_layers in pretrain_infos.keys(), \
                "TSM-ResNet{} do not have pretrained weights now, " \
                "pretrained should be set as False".format(num_layers)
L
LielinJiang 已提交
201
        weight_path = get_weights_path_from_url(*(pretrain_infos[num_layers]))
202 203
        assert weight_path.endswith('.pdparams'), \
                "suffix of weight must be .pdparams"
D
dengkaipeng 已提交
204
        model.load(weight_path)
205 206 207 208 209 210 211 212 213 214 215 216 217
    return model


def tsm_resnet50(seg_num=8, num_classes=400, pretrained=True):
    """TSM model with 50-layer ResNet as backbone
    
    Args:
        seg_num (int): segment number of each video sample. Default 8.
        num_classes (int): video class number. Default 400.
        pretrained (bool): If True, returns a model with pre-trained model
            on COCO, default True
    """
    return _tsm_resnet(50, seg_num, num_classes, pretrained)