darknet.py 7.8 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from paddle.fluid.dygraph.nn import Conv2D, BatchNorm, Pool2D, Linear

from paddle.incubate.hapi.model import Model
from paddle.incubate.hapi.download import get_weights_path_from_url

__all__ = ['DarkNet', 'darknet53']

# {num_layers: (url, md5)}
model_urls = {
    'darknet53':
    ('https://paddle-hapi.bj.bcebos.com/models/darknet53.pdparams',
     'ca506a90e2efecb9a2093f8ada808708')
}


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size=3,
                 stride=1,
                 groups=1,
                 padding=0,
                 act="leaky"):
        super(ConvBNLayer, self).__init__()

        self.conv = Conv2D(
            num_channels=ch_in,
            num_filters=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Normal(0., 0.02)),
            bias_attr=False,
            act=None)
        self.batch_norm = BatchNorm(
            num_channels=ch_out,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Normal(0., 0.02),
                regularizer=L2Decay(0.)),
            bias_attr=ParamAttr(
                initializer=fluid.initializer.Constant(0.0),
                regularizer=L2Decay(0.)))

        self.act = act

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.batch_norm(out)

        if self.act == 'leaky':
            out = fluid.layers.leaky_relu(x=out, alpha=0.1)
        return out


class DownSample(fluid.dygraph.Layer):
    def __init__(self, ch_in, ch_out, filter_size=3, stride=2, padding=1):

        super(DownSample, self).__init__()

        self.conv_bn_layer = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding)
        self.ch_out = ch_out

    def forward(self, inputs):
        out = self.conv_bn_layer(inputs)
        return out


class BasicBlock(fluid.dygraph.Layer):
    def __init__(self, ch_in, ch_out):
        super(BasicBlock, self).__init__()

        self.conv1 = ConvBNLayer(
            ch_in=ch_in, ch_out=ch_out, filter_size=1, stride=1, padding=0)
        self.conv2 = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out * 2,
            filter_size=3,
            stride=1,
            padding=1)

    def forward(self, inputs):
        conv1 = self.conv1(inputs)
        conv2 = self.conv2(conv1)
        out = fluid.layers.elementwise_add(x=inputs, y=conv2, act=None)
        return out


class LayerWarp(fluid.dygraph.Layer):
    def __init__(self, ch_in, ch_out, count):
        super(LayerWarp, self).__init__()

        self.basicblock0 = BasicBlock(ch_in, ch_out)
        self.res_out_list = []
        for i in range(1, count):
            res_out = self.add_sublayer("basic_block_%d" % (i),
                                        BasicBlock(ch_out * 2, ch_out))
            self.res_out_list.append(res_out)
        self.ch_out = ch_out

    def forward(self, inputs):
        y = self.basicblock0(inputs)
        for basic_block_i in self.res_out_list:
            y = basic_block_i(y)
        return y


DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}


class DarkNet(Model):
    """DarkNet model from
    `"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_

    Args:
        num_layers (int): layer number of DarkNet, only 53 supported currently, default: 53.
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 1000.
        with_pool (bool): use pool before the last fc layer or not. Default: True.
        classifier_activation (str): activation for the last fc layer. Default: 'softmax'.

    """

    def __init__(self,
                 num_layers=53,
                 num_classes=1000,
                 with_pool=True,
                 classifier_activation='softmax'):
        super(DarkNet, self).__init__()
        assert num_layers in DarkNet_cfg.keys(), \
            "only support num_layers in {} currently" \
            .format(DarkNet_cfg.keys())
        self.stages = DarkNet_cfg[num_layers]
        self.stages = self.stages[0:5]
        self.num_classes = num_classes
        self.with_pool = True
        ch_in = 3
        self.conv0 = ConvBNLayer(
            ch_in=ch_in, ch_out=32, filter_size=3, stride=1, padding=1)

        self.downsample0 = DownSample(ch_in=32, ch_out=32 * 2)
        self.darknet53_conv_block_list = []
        self.downsample_list = []
        ch_in = [64, 128, 256, 512, 1024]
        for i, stage in enumerate(self.stages):
            conv_block = self.add_sublayer("stage_%d" % (i),
                                           LayerWarp(
                                               int(ch_in[i]), 32 * (2**i),
                                               stage))
            self.darknet53_conv_block_list.append(conv_block)

        for i in range(len(self.stages) - 1):
            downsample = self.add_sublayer(
                "stage_%d_downsample" % i,
                DownSample(
                    ch_in=32 * (2**(i + 1)), ch_out=32 * (2**(i + 2))))
            self.downsample_list.append(downsample)

        if self.with_pool:
            self.global_pool = Pool2D(
                pool_size=7, pool_type='avg', global_pooling=True)

        if self.num_classes > 0:
            stdv = 1.0 / math.sqrt(32 * (2**(i + 2)))
            self.fc_input_dim = 32 * (2**(i + 2))

            self.fc = Linear(
                self.fc_input_dim,
                num_classes,
                act='softmax',
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):

        out = self.conv0(inputs)
        out = self.downsample0(out)

        for i, conv_block_i in enumerate(self.darknet53_conv_block_list):
            out = conv_block_i(out)
            if i < len(self.stages) - 1:
                out = self.downsample_list[i](out)

        if self.with_pool:
            out = self.global_pool(out)
        if self.num_classes > 0:
            out = fluid.layers.reshape(out, shape=[-1, self.fc_input_dim])
            out = self.fc(out)
        return out


def _darknet(arch, num_layers=53, pretrained=False, **kwargs):
    model = DarkNet(num_layers, **kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(*(model_urls[arch]))
        assert weight_path.endswith('.pdparams'), \
                "suffix of weight must be .pdparams"
        model.load(weight_path)
    return model


def darknet53(pretrained=False, **kwargs):
    """DarkNet 53-layer model
    
    Args:
        input_channels (bool): channel number of input data, default 3. 
        pretrained (bool): If True, returns a model pre-trained on ImageNet,
            default True.
            
    """
    return _darknet('darknet53', 53, pretrained, **kwargs)