mnist.py 3.0 KB
Newer Older
L
LielinJiang 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
L
LielinJiang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import argparse

from paddle import fluid
from paddle.fluid.optimizer import Momentum
L
LielinJiang 已提交
22
from paddle.incubate.hapi.datasets.mnist import MNIST as MnistDataset
L
LielinJiang 已提交
23

L
LielinJiang 已提交
24 25 26 27
from paddle.incubate.hapi.model import Input, set_device
from paddle.incubate.hapi.loss import CrossEntropy
from paddle.incubate.hapi.metrics import Accuracy
from paddle.incubate.hapi.vision.models import LeNet
L
LielinJiang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62


def main():
    device = set_device(FLAGS.device)
    fluid.enable_dygraph(device) if FLAGS.dynamic else None

    train_dataset = MnistDataset(mode='train')
    val_dataset = MnistDataset(mode='test')

    inputs = [Input([None, 1, 28, 28], 'float32', name='image')]
    labels = [Input([None, 1], 'int64', name='label')]

    model = LeNet()
    optim = Momentum(
        learning_rate=FLAGS.lr, momentum=.9, parameter_list=model.parameters())

    model.prepare(
        optim,
        CrossEntropy(),
        Accuracy(topk=(1, 2)),
        inputs,
        labels,
        device=FLAGS.device)

    if FLAGS.resume is not None:
        model.load(FLAGS.resume)

    if FLAGS.eval_only:
        model.evaluate(val_dataset, batch_size=FLAGS.batch_size)
        return

    model.fit(train_dataset,
              val_dataset,
              epochs=FLAGS.epoch,
              batch_size=FLAGS.batch_size,
L
LielinJiang 已提交
63
              save_dir=FLAGS.output_dir)
L
LielinJiang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83


if __name__ == '__main__':
    parser = argparse.ArgumentParser("CNN training on MNIST")
    parser.add_argument(
        "--device", type=str, default='gpu', help="device to use, gpu or cpu")
    parser.add_argument(
        "-d", "--dynamic", action='store_true', help="enable dygraph mode")
    parser.add_argument(
        "-e", "--epoch", default=10, type=int, help="number of epoch")
    parser.add_argument(
        '--lr',
        '--learning-rate',
        default=1e-3,
        type=float,
        metavar='LR',
        help='initial learning rate')
    parser.add_argument(
        "-b", "--batch_size", default=128, type=int, help="batch size")
    parser.add_argument(
L
LielinJiang 已提交
84 85 86 87
        "--output-dir",
        type=str,
        default='mnist_checkpoint',
        help="checkpoint save dir")
L
LielinJiang 已提交
88 89 90 91 92 93 94 95 96 97
    parser.add_argument(
        "-r",
        "--resume",
        default=None,
        type=str,
        help="checkpoint path to resume")
    parser.add_argument(
        "--eval-only", action='store_true', help="only evaluate the model")
    FLAGS = parser.parse_args()
    main()