reader.py 6.3 KB
Newer Older
0
0YuanZhang0 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
SequenceTagging dataset
"""

from __future__ import division
from __future__ import print_function

import io
import numpy as np

import paddle.fluid as fluid


class LacDataset(object):
    """
    Load lexical analysis dataset
    """

    def __init__(self, args):
        self.word_dict_path = args.word_dict_path
        self.label_dict_path = args.label_dict_path
        self.word_rep_dict_path = args.word_rep_dict_path
        self._load_dict()

    def _load_dict(self):
        self.word2id_dict = self.load_kv_dict(
            self.word_dict_path, reverse=True, value_func=np.int64)
        self.id2word_dict = self.load_kv_dict(self.word_dict_path)
        self.label2id_dict = self.load_kv_dict(
            self.label_dict_path, reverse=True, value_func=np.int64)
        self.id2label_dict = self.load_kv_dict(self.label_dict_path)
        if self.word_rep_dict_path is None:
            self.word_replace_dict = dict()
        else:
            self.word_replace_dict = self.load_kv_dict(self.word_rep_dict_path)

    def load_kv_dict(self,
                     dict_path,
                     reverse=False,
                     delimiter="\t",
                     key_func=None,
                     value_func=None):
        """
        Load key-value dict from file
        """
        result_dict = {}
        for line in io.open(dict_path, "r", encoding='utf8'):
            terms = line.strip("\n").split(delimiter)
            if len(terms) != 2:
                continue
            if reverse:
                value, key = terms
            else:
                key, value = terms
            if key in result_dict:
                raise KeyError("key duplicated with [%s]" % (key))
            if key_func:
                key = key_func(key)
            if value_func:
                value = value_func(value)
            result_dict[key] = value
        return result_dict

    @property
    def vocab_size(self):
        return len(self.word2id_dict.values())

    @property
    def num_labels(self):
        return len(self.label2id_dict.values())

    def get_num_examples(self, filename):
        """num of line of file"""
        return sum(1 for line in io.open(filename, "r", encoding='utf8'))

    def word_to_ids(self, words):
        """convert word to word index"""
        word_ids = []
        for word in words:
            word = self.word_replace_dict.get(word, word)
            if word not in self.word2id_dict:
                word = "OOV"
            word_id = self.word2id_dict[word]
            word_ids.append(word_id)

        return word_ids

    def label_to_ids(self, labels):
        """convert label to label index"""
        label_ids = []
        for label in labels:
            if label not in self.label2id_dict:
                label = "O"
            label_id = self.label2id_dict[label]
            label_ids.append(label_id)
        return label_ids

    def file_reader(self,
                    filename,
                    mode="train",
                    batch_size=32,
                    max_seq_len=126):
        """
        yield (word_idx, target_idx) one by one from file,
            or yield (word_idx, ) in `infer` mode
        """

        def wrapper():
            fread = io.open(filename, "r", encoding="utf-8")
            headline = next(fread)
            headline = headline.strip().split('\t')
            assert len(headline) == 2 and headline[0] == "text_a" and headline[
                1] == "label"
            buf = []
            for line in fread:
                words, labels = line.strip("\n").split("\t")
                if len(words) < 1:
                    continue
                word_ids = self.word_to_ids(words.split("\002"))
                label_ids = self.label_to_ids(labels.split("\002"))
                assert len(word_ids) == len(label_ids)
                word_ids = word_ids[0:max_seq_len]
                words_len = np.int64(len(word_ids))
                word_ids += [0 for _ in range(max_seq_len - words_len)]
                label_ids = label_ids[0:max_seq_len]
                label_ids += [0 for _ in range(max_seq_len - words_len)]
                assert len(word_ids) == len(label_ids)
                yield word_ids, label_ids, words_len
            fread.close()

        return wrapper


def create_lexnet_data_generator(args, reader, file_name, place, mode="train"):
    def wrapper():
        batch_words, batch_labels, seq_lens = [], [], []
        for epoch in xrange(args.epoch):
            for instance in reader.file_reader(
                    file_name, mode, max_seq_len=args.max_seq_len)():
                words, labels, words_len = instance
                if len(seq_lens) < args.batch_size:
                    batch_words.append(words)
                    batch_labels.append(labels)
                    seq_lens.append(words_len)
                if len(seq_lens) == args.batch_size:
                    yield batch_words, batch_labels, seq_lens, batch_labels
                    batch_words, batch_labels, seq_lens = [], [], []

        if len(seq_lens) > 0:
            yield batch_words, batch_labels, seq_lens, batch_labels
            batch_words, batch_labels, seq_lens = [], [], []

    return wrapper


def create_dataloader(generator, place, feed_list=None):
    if not feed_list:
        data_loader = fluid.io.DataLoader.from_generator(
            capacity=50,
            use_double_buffer=True,
            iterable=True,
            return_list=True)
    else:
        data_loader = fluid.io.DataLoader.from_generator(
            feed_list=feed_list,
            capacity=50,
            use_double_buffer=True,
            iterable=True,
            return_list=True)
    data_loader.set_batch_generator(generator, places=place)
    return data_loader