main.py 8.0 KB
Newer Older
D
dengkaipeng 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Zhang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
Y
Yang Zhang 已提交
16
from __future__ import print_function
Y
Yang Zhang 已提交
17 18 19 20 21 22 23

import argparse
import contextlib
import os

import numpy as np

D
dengkaipeng 已提交
24 25
from paddle import fluid
from paddle.fluid.optimizer import Momentum
D
dengkaipeng 已提交
26
from paddle.io import DataLoader
Y
Yang Zhang 已提交
27

28 29
from hapi.model import Model, Input, set_device
from hapi.distributed import DistributedBatchSampler
L
LielinJiang 已提交
30
from hapi.vision.transforms import BatchCompose
D
dengkaipeng 已提交
31

D
dengkaipeng 已提交
32 33
from modeling import yolov3_darknet53, YoloLoss
from coco import COCODataset
D
dengkaipeng 已提交
34
from coco_metric import COCOMetric
D
dengkaipeng 已提交
35
from transforms import *
D
dengkaipeng 已提交
36

D
dengkaipeng 已提交
37
NUM_MAX_BOXES = 50
Y
Yang Zhang 已提交
38 39


D
dengkaipeng 已提交
40
def make_optimizer(step_per_epoch, parameter_list=None):
Y
Yang Zhang 已提交
41
    base_lr = FLAGS.lr
D
dengkaipeng 已提交
42
    warm_up_iter = 1000
Y
Yang Zhang 已提交
43 44
    momentum = 0.9
    weight_decay = 5e-4
D
dengkaipeng 已提交
45
    boundaries = [step_per_epoch * e for e in [200, 250]]
L
LielinJiang 已提交
46
    values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
Y
Yang Zhang 已提交
47
    learning_rate = fluid.layers.piecewise_decay(
L
LielinJiang 已提交
48
        boundaries=boundaries, values=values)
Y
Yang Zhang 已提交
49 50
    learning_rate = fluid.layers.linear_lr_warmup(
        learning_rate=learning_rate,
Y
Yang Zhang 已提交
51 52 53 54
        warmup_steps=warm_up_iter,
        start_lr=0.0,
        end_lr=base_lr)
    optimizer = fluid.optimizer.Momentum(
Y
Yang Zhang 已提交
55
        learning_rate=learning_rate,
Y
Yang Zhang 已提交
56 57 58 59 60 61 62
        regularization=fluid.regularizer.L2Decay(weight_decay),
        momentum=momentum,
        parameter_list=parameter_list)
    return optimizer


def main():
D
dengkaipeng 已提交
63 64
    device = set_device(FLAGS.device)
    fluid.enable_dygraph(device) if FLAGS.dynamic else None
L
LielinJiang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    inputs = [
        Input(
            [None, 1], 'int64', name='img_id'), Input(
                [None, 2], 'int32', name='img_shape'), Input(
                    [None, 3, None, None], 'float32', name='image')
    ]
    labels = [
        Input(
            [None, NUM_MAX_BOXES, 4], 'float32', name='gt_bbox'), Input(
                [None, NUM_MAX_BOXES], 'int32', name='gt_label'), Input(
                    [None, NUM_MAX_BOXES], 'float32', name='gt_score')
    ]

    if not FLAGS.eval_only:  # training mode
        train_transform = Compose([
            ColorDistort(), RandomExpand(), RandomCrop(), RandomFlip(),
            NormalizeBox(), PadBox(), BboxXYXY2XYWH()
        ])
D
dengkaipeng 已提交
84
        train_collate_fn = BatchCompose([RandomShape(), NormalizeImage()])
L
LielinJiang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        dataset = COCODataset(
            dataset_dir=FLAGS.data,
            anno_path='annotations/instances_train2017.json',
            image_dir='train2017',
            with_background=False,
            mixup=True,
            transform=train_transform)
        batch_sampler = DistributedBatchSampler(
            dataset, batch_size=FLAGS.batch_size, shuffle=True, drop_last=True)
        loader = DataLoader(
            dataset,
            batch_sampler=batch_sampler,
            places=device,
            num_workers=FLAGS.num_workers,
            return_list=True,
            collate_fn=train_collate_fn)
    else:  # evaluation mode
        eval_transform = Compose([
            ResizeImage(target_size=608), NormalizeBox(), PadBox(),
            BboxXYXY2XYWH()
        ])
D
dengkaipeng 已提交
106
        eval_collate_fn = BatchCompose([NormalizeImage()])
L
LielinJiang 已提交
107 108 109 110 111 112
        dataset = COCODataset(
            dataset_dir=FLAGS.data,
            anno_path='annotations/instances_val2017.json',
            image_dir='val2017',
            with_background=False,
            transform=eval_transform)
D
dengkaipeng 已提交
113
        # batch_size can only be 1 in evaluation for YOLOv3
D
dengkaipeng 已提交
114
        # prediction bbox is a LoDTensor
L
LielinJiang 已提交
115 116 117 118 119 120 121 122 123
        batch_sampler = DistributedBatchSampler(
            dataset, batch_size=1, shuffle=False, drop_last=False)
        loader = DataLoader(
            dataset,
            batch_sampler=batch_sampler,
            places=device,
            num_workers=FLAGS.num_workers,
            return_list=True,
            collate_fn=eval_collate_fn)
D
dengkaipeng 已提交
124

D
dengkaipeng 已提交
125
    pretrained = FLAGS.eval_only and FLAGS.weights is None
L
LielinJiang 已提交
126 127 128 129
    model = yolov3_darknet53(
        num_classes=dataset.num_classes,
        model_mode='eval' if FLAGS.eval_only else 'train',
        pretrained=pretrained)
D
dengkaipeng 已提交
130

D
dengkaipeng 已提交
131
    if FLAGS.pretrain_weights and not FLAGS.eval_only:
L
LielinJiang 已提交
132 133
        model.load(
            FLAGS.pretrain_weights, skip_mismatch=True, reset_optimizer=True)
D
dengkaipeng 已提交
134

L
LielinJiang 已提交
135 136
    optim = make_optimizer(
        len(batch_sampler), parameter_list=model.parameters())
D
dengkaipeng 已提交
137

L
LielinJiang 已提交
138 139 140 141 142 143
    model.prepare(
        optim,
        YoloLoss(num_classes=dataset.num_classes),
        inputs=inputs,
        labels=labels,
        device=FLAGS.device)
D
dengkaipeng 已提交
144 145 146 147 148 149 150 151 152 153 154

    # NOTE: we implement COCO metric of YOLOv3 model here, separately
    # from 'prepare' and 'fit' framework for follwing reason:
    # 1. YOLOv3 network structure is different between 'train' and
    # 'eval' mode, in 'eval' mode, output prediction bbox is not the
    # feature map used for YoloLoss calculating
    # 2. COCO metric behavior is also different from defined Metric
    # for COCO metric should not perform accumulate in each iteration
    # but only accumulate at the end of an epoch
    if FLAGS.eval_only:
        if FLAGS.weights is not None:
D
dengkaipeng 已提交
155
            model.load(FLAGS.weights, reset_optimizer=True)
D
dengkaipeng 已提交
156
        preds = model.predict(loader, stack_outputs=False)
D
dengkaipeng 已提交
157
        _, _, _, img_ids, bboxes = preds
Y
Yang Zhang 已提交
158

L
LielinJiang 已提交
159 160
        anno_path = os.path.join(FLAGS.data,
                                 'annotations/instances_val2017.json')
D
dengkaipeng 已提交
161 162 163 164 165 166
        coco_metric = COCOMetric(anno_path=anno_path, with_background=False)
        for img_id, bbox in zip(img_ids, bboxes):
            coco_metric.update(img_id, bbox)
        coco_metric.accumulate()
        coco_metric.reset()
        return
Y
Yang Zhang 已提交
167

D
dengkaipeng 已提交
168 169
    if FLAGS.resume is not None:
        model.load(FLAGS.resume)
Y
Yang Zhang 已提交
170

D
dengkaipeng 已提交
171 172 173 174
    model.fit(train_data=loader,
              epochs=FLAGS.epoch - FLAGS.no_mixup_epoch,
              save_dir="yolo_checkpoint/mixup",
              save_freq=10)
Y
Yang Zhang 已提交
175

D
dengkaipeng 已提交
176
    # do not use image mixup transfrom in the last FLAGS.no_mixup_epoch epoches
D
dengkaipeng 已提交
177 178 179 180 181
    dataset.mixup = False
    model.fit(train_data=loader,
              epochs=FLAGS.no_mixup_epoch,
              save_dir="yolo_checkpoint/no_mixup",
              save_freq=5)
Y
Yang Zhang 已提交
182 183 184


if __name__ == '__main__':
D
dengkaipeng 已提交
185 186
    parser = argparse.ArgumentParser("Yolov3 Training on VOC")
    parser.add_argument(
L
LielinJiang 已提交
187 188 189
        "--data",
        type=str,
        default='dataset/voc',
D
dengkaipeng 已提交
190
        help="path to dataset directory")
D
dengkaipeng 已提交
191 192
    parser.add_argument(
        "--device", type=str, default='gpu', help="device to use, gpu or cpu")
Y
Yang Zhang 已提交
193 194
    parser.add_argument(
        "-d", "--dynamic", action='store_true', help="enable dygraph mode")
D
dengkaipeng 已提交
195 196
    parser.add_argument(
        "--eval_only", action='store_true', help="run evaluation only")
Y
Yang Zhang 已提交
197 198
    parser.add_argument(
        "-e", "--epoch", default=300, type=int, help="number of epoch")
D
dengkaipeng 已提交
199
    parser.add_argument(
L
LielinJiang 已提交
200 201 202
        "--no_mixup_epoch",
        default=30,
        type=int,
D
dengkaipeng 已提交
203
        help="number of the last N epoch without image mixup")
Y
Yang Zhang 已提交
204
    parser.add_argument(
L
LielinJiang 已提交
205 206 207 208 209
        '--lr',
        '--learning-rate',
        default=0.001,
        type=float,
        metavar='LR',
Y
Yang Zhang 已提交
210
        help='initial learning rate')
Y
Yang Zhang 已提交
211
    parser.add_argument(
D
dengkaipeng 已提交
212 213
        "-b", "--batch_size", default=8, type=int, help="batch size")
    parser.add_argument(
L
LielinJiang 已提交
214 215 216 217 218
        "-j",
        "--num_workers",
        default=4,
        type=int,
        help="reader worker number")
Y
Yang Zhang 已提交
219
    parser.add_argument(
L
LielinJiang 已提交
220 221 222 223
        "-p",
        "--pretrain_weights",
        default=None,
        type=str,
Y
Yang Zhang 已提交
224
        help="path to pretrained weights")
D
dengkaipeng 已提交
225
    parser.add_argument(
L
LielinJiang 已提交
226
        "-r", "--resume", default=None, type=str, help="path to model weights")
D
dengkaipeng 已提交
227
    parser.add_argument(
L
LielinJiang 已提交
228 229 230 231
        "-w",
        "--weights",
        default=None,
        type=str,
D
dengkaipeng 已提交
232
        help="path to weights for evaluation")
Y
Yang Zhang 已提交
233
    FLAGS = parser.parse_args()
Y
Yang Zhang 已提交
234
    assert FLAGS.data, "error: must provide data path"
Y
Yang Zhang 已提交
235
    main()