bert_classifier.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT fine-tuning in Paddle Dygraph Mode."""

import paddle.fluid as fluid
from hapi.metrics import Accuracy
from hapi.configure import Config
X
xyzhou-puck 已提交
19 20
from hapi.text.bert import BertEncoder
from paddle.fluid.dygraph import Linear, Layer
L
LielinJiang 已提交
21
from hapi.loss import SoftmaxWithCrossEntropy
X
xyzhou-puck 已提交
22
from hapi.model import set_device, Model, Input
23
import hapi.text.tokenizer.tokenization as tokenization
X
xyzhou-puck 已提交
24
from hapi.text.bert import BertConfig, BertDataLoader, BertInputExample, make_optimizer
25 26


X
xyzhou-puck 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class ClsModelLayer(Model):
    """
    classify model
    """

    def __init__(self,
                 args,
                 config,
                 num_labels,
                 return_pooled_out=True,
                 use_fp16=False):
        super(ClsModelLayer, self).__init__()
        self.config = config
        self.use_fp16 = use_fp16
        self.loss_scaling = args.loss_scaling

        self.bert_layer = BertEncoder(
            config=self.config, return_pooled_out=True, use_fp16=self.use_fp16)

        self.cls_fc = Linear(
            input_dim=self.config["hidden_size"],
            output_dim=num_labels,
            param_attr=fluid.ParamAttr(
                name="cls_out_w",
                initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
            bias_attr=fluid.ParamAttr(
                name="cls_out_b", initializer=fluid.initializer.Constant(0.)))

    def forward(self, src_ids, position_ids, sentence_ids, input_mask):
        """
        forward
        """

        enc_output, next_sent_feat = self.bert_layer(src_ids, position_ids,
                                                     sentence_ids, input_mask)

        cls_feats = fluid.layers.dropout(
            x=next_sent_feat,
            dropout_prob=0.1,
            dropout_implementation="upscale_in_train")

        pred = self.cls_fc(cls_feats)

        return pred


def main():
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

    config = Config(yaml_file="./bert.yaml")
    config.build()
    config.Print()

    device = set_device("gpu" if config.use_cuda else "cpu")
    fluid.enable_dygraph(device)

    bert_config = BertConfig(config.bert_config_path)
    bert_config.print_config()

    tokenizer = tokenization.FullTokenizer(
        vocab_file=config.vocab_path, do_lower_case=config.do_lower_case)

    def mnli_line_processor(line_id, line):
        if line_id == "0":
            return None
        uid = tokenization.convert_to_unicode(line[0])
        text_a = tokenization.convert_to_unicode(line[8])
        text_b = tokenization.convert_to_unicode(line[9])
        label = tokenization.convert_to_unicode(line[-1])
        if label not in ["contradiction", "entailment", "neutral"]:
            label = "contradiction"
        return BertInputExample(
            uid=uid, text_a=text_a, text_b=text_b, label=label)

X
xyzhou-puck 已提交
100
    train_dataloader = BertDataLoader(
101 102
        "./data/glue_data/MNLI/train.tsv",
        tokenizer, ["contradiction", "entailment", "neutral"],
X
xyzhou-puck 已提交
103 104
        max_seq_length=config.max_seq_len,
        batch_size=config.batch_size,
105 106
        line_processor=mnli_line_processor)

X
xyzhou-puck 已提交
107
    test_dataloader = BertDataLoader(
X
xyzhou-puck 已提交
108 109 110 111 112 113 114 115 116 117
        "./data/glue_data/MNLI/dev_matched.tsv",
        tokenizer, ["contradiction", "entailment", "neutral"],
        max_seq_length=config.max_seq_len,
        batch_size=config.batch_size,
        line_processor=mnli_line_processor,
        shuffle=False,
        phase="predict")

    trainer_count = fluid.dygraph.parallel.Env().nranks
    num_train_examples = len(train_dataloader.dataset)
118 119 120 121 122 123 124 125 126 127 128 129 130
    max_train_steps = config.epoch * num_train_examples // config.batch_size // trainer_count
    warmup_steps = int(max_train_steps * config.warmup_proportion)

    print("Trainer count: %d" % trainer_count)
    print("Num train examples: %d" % num_train_examples)
    print("Max train steps: %d" % max_train_steps)
    print("Num warmup steps: %d" % warmup_steps)

    inputs = [
        Input(
            [None, None], 'int64', name='src_ids'), Input(
                [None, None], 'int64', name='pos_ids'), Input(
                    [None, None], 'int64', name='sent_ids'), Input(
X
xyzhou-puck 已提交
131
                        [None, None, 1], 'float32', name='input_mask')
132 133 134 135 136 137 138 139 140 141
    ]

    labels = [Input([None, 1], 'int64', name='label')]

    cls_model = ClsModelLayer(
        config,
        bert_config,
        len(["contradiction", "entailment", "neutral"]),
        return_pooled_out=True)

X
xyzhou-puck 已提交
142
    optimizer = make_optimizer(
143 144 145 146 147
        warmup_steps=warmup_steps,
        num_train_steps=max_train_steps,
        learning_rate=config.learning_rate,
        weight_decay=config.weight_decay,
        scheduler=config.lr_scheduler,
X
xyzhou-puck 已提交
148
        model=cls_model,
149 150 151 152 153 154 155 156 157 158 159
        loss_scaling=config.loss_scaling,
        parameter_list=cls_model.parameters())

    cls_model.prepare(
        optimizer,
        SoftmaxWithCrossEntropy(),
        Accuracy(topk=(1, 2)),
        inputs,
        labels,
        device=device)

X
xyzhou-puck 已提交
160
    cls_model.bert_layer.load("./bert_small", reset_optimizer=True)
161

X
xyzhou-puck 已提交
162 163 164 165
    # do train
    cls_model.fit(train_data=train_dataloader.dataloader,
                  epochs=config.epoch,
                  save_dir=config.checkpoints)
166

X
xyzhou-puck 已提交
167 168 169
    # do eval
    cls_model.evaluate(
        eval_data=test_dataloader.dataloader, batch_size=config.batch_size)
170 171 172


if __name__ == '__main__':
X
xyzhou-puck 已提交
173
    main()