train.py 5.0 KB
Newer Older
H
huangjun12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle.fluid as fluid
import argparse
import logging
import sys
import os

21
from hapi.model import set_device, Input
D
dengkaipeng 已提交
22
from hapi.vision.models import bmn, BmnLoss
H
huangjun12 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
from reader import BmnDataset
from config_utils import *

DATATYPE = 'float32'

logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser("Paddle high level api of BMN.")
    parser.add_argument(
        "-d",
        "--dynamic",
        default=True,
        action='store_true',
        help="enable dygraph mode")
    parser.add_argument(
        '--config_file',
        type=str,
        default='bmn.yaml',
        help='path to config file of model')
    parser.add_argument(
        '--batch_size',
        type=int,
        default=None,
        help='training batch size. None to use config file setting.')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=0.001,
        help='learning rate use for training. None to use config file setting.')
    parser.add_argument(
        '--resume',
        type=str,
        default=None,
        help='filename to resume training based on previous checkpoints. '
        'None for not resuming any checkpoints.')
    parser.add_argument(
        '--device',
        type=str,
        default='gpu',
        help='gpu or cpu, default use gpu.')
    parser.add_argument(
        '--epoch',
        type=int,
        default=9,
        help='epoch number, 0 for read from config file')
    parser.add_argument(
        '--valid_interval',
        type=int,
        default=1,
        help='validation epoch interval, 0 for no validation.')
    parser.add_argument(
        '--save_dir',
        type=str,
        default="checkpoint",
        help='path to save train snapshoot')
    parser.add_argument(
        '--log_interval',
        type=int,
        default=10,
        help='mini-batch interval to log.')
    args = parser.parse_args()
    return args


# Optimizer
def optimizer(cfg, parameter_list):
    bd = [cfg.TRAIN.lr_decay_iter]
    base_lr = cfg.TRAIN.learning_rate
    lr_decay = cfg.TRAIN.learning_rate_decay
    l2_weight_decay = cfg.TRAIN.l2_weight_decay
    lr = [base_lr, base_lr * lr_decay]
    optimizer = fluid.optimizer.Adam(
        fluid.layers.piecewise_decay(
            boundaries=bd, values=lr),
        parameter_list=parameter_list,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=l2_weight_decay))
    return optimizer


# TRAIN
def train_bmn(args):
    device = set_device(args.device)
    fluid.enable_dygraph(device) if args.dynamic else None

    if not os.path.isdir(args.save_dir):
        os.makedirs(args.save_dir)

    config = parse_config(args.config_file)
    train_cfg = merge_configs(config, 'train', vars(args))
    val_cfg = merge_configs(config, 'valid', vars(args))

    inputs = [
        Input(
            [None, config.MODEL.feat_dim, config.MODEL.tscale],
            'float32',
            name='feat_input')
    ]
    gt_iou_map = Input(
        [None, config.MODEL.dscale, config.MODEL.tscale],
        'float32',
        name='gt_iou_map')
    gt_start = Input([None, config.MODEL.tscale], 'float32', name='gt_start')
    gt_end = Input([None, config.MODEL.tscale], 'float32', name='gt_end')
    labels = [gt_iou_map, gt_start, gt_end]

    # data
    train_dataset = BmnDataset(train_cfg, 'train')
    val_dataset = BmnDataset(val_cfg, 'valid')

    # model
D
dengkaipeng 已提交
139
    model = bmn(config, args.dynamic, pretrained=False)
H
huangjun12 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    optim = optimizer(config, parameter_list=model.parameters())
    model.prepare(
        optimizer=optim,
        loss_function=BmnLoss(config),
        inputs=inputs,
        labels=labels,
        device=device)

    # if resume weights is given, load resume weights directly
    if args.resume is not None:
        model.load(args.resume)

    model.fit(train_data=train_dataset,
              eval_data=val_dataset,
              batch_size=train_cfg.TRAIN.batch_size,
              epochs=args.epoch,
              eval_freq=args.valid_interval,
              log_freq=args.log_interval,
              save_dir=args.save_dir,
              shuffle=train_cfg.TRAIN.use_shuffle,
              num_workers=train_cfg.TRAIN.num_workers,
              drop_last=True)


if __name__ == "__main__":
    args = parse_args()
    train_bmn(args)