kinetics_dataset.py 5.4 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import random
import numpy as np
from PIL import Image, ImageEnhance

try:
    import cPickle as pickle
    from cStringIO import StringIO
except ImportError:
    import pickle
    from io import BytesIO

D
dengkaipeng 已提交
29
from paddle.io import Dataset
D
dengkaipeng 已提交
30 31 32 33 34 35

import logging
logger = logging.getLogger(__name__)

__all__ = ['KineticsDataset']

D
dengkaipeng 已提交
36 37
KINETICS_CLASS_NUM = 400

D
dengkaipeng 已提交
38 39 40 41 42 43

class KineticsDataset(Dataset):
    """
    Kinetics dataset

    Args:
D
dengkaipeng 已提交
44 45 46 47 48 49 50 51 52 53 54 55
        file_list (str): path to file list
        pickle_dir (str): path to pickle file directory
        label_list (str): path to label_list file, if set None, the
            default class number 400 of kinetics dataset will be
            used. Default None
        mode (str): 'train' or 'val' mode, segmentation methods will
            be different in these 2 modes. Default 'train'
        seg_num (int): segment number to sample from each video.
            Default 8
        seg_len (int): frame number of each segment. Default 1
        transform (callable): transforms to perform on video samples,
            None for no transforms. Default None.
D
dengkaipeng 已提交
56 57 58
    """

    def __init__(self,
D
dengkaipeng 已提交
59 60 61
                 file_list=None,
                 pickle_dir=None,
                 pickle_file=None,
D
dengkaipeng 已提交
62
                 label_list=None,
D
dengkaipeng 已提交
63 64 65 66
                 mode='train',
                 seg_num=8,
                 seg_len=1,
                 transform=None):
D
dengkaipeng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        assert str.lower(mode) in ['train', 'val', 'test'], \
                "mode can only be 'train' 'val' or 'test'"
        self.mode = str.lower(mode)

        if self.mode in ['train', 'val']:
            assert os.path.isfile(file_list), \
                    "file_list {} not a file".format(file_list)
            with open(file_list) as f:
                self.pickle_paths = [l.strip() for l in f]

            assert os.path.isdir(pickle_dir), \
                    "pickle_dir {} not a directory".format(pickle_dir)
            self.pickle_dir = pickle_dir
        else:
            assert os.path.isfile(pickle_file), \
                    "pickle_file {} not a file".format(pickle_file)
            self.pickle_dir = ''
            self.pickle_paths = [pickle_file]
D
dengkaipeng 已提交
85

D
dengkaipeng 已提交
86 87 88 89 90 91 92
        self.label_list = label_list
        if self.label_list is not None:
            assert os.path.isfile(self.label_list), \
                "label_list {} not a file".format(self.label_list)
            with open(self.label_list) as f:
                self.label_list = [int(l.strip()) for l in f]

D
dengkaipeng 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        self.seg_num = seg_num
        self.seg_len = seg_len
        self.transform = transform

    def __len__(self):
        return len(self.pickle_paths)

    def __getitem__(self, idx):
        pickle_path = os.path.join(self.pickle_dir, self.pickle_paths[idx])

        try:
            if six.PY2:
                data = pickle.load(open(pickle_path, 'rb'))
            else:
                data = pickle.load(open(pickle_path, 'rb'), encoding='bytes')

            vid, label, frames = data
            if len(frames) < 1:
                logger.error("{} contains no frame".format(pickle_path))
                sys.exit(-1)
        except Exception as e:
            logger.error("Load {} failed: {}".format(pickle_path, e))
            sys.exit(-1)

D
dengkaipeng 已提交
117 118
        if self.label_list is not None:
            label = self.label_list.index(label)
D
dengkaipeng 已提交
119 120 121 122 123 124
        imgs = self._video_loader(frames)

        if self.transform:
            imgs, label = self.transform(imgs, label)
        return imgs, np.array([label])

D
dengkaipeng 已提交
125 126 127 128 129
    @property
    def num_classes(self):
        return KINETICS_CLASS_NUM if self.label_list is None \
                else len(self.label_list)

D
dengkaipeng 已提交
130
    def _video_loader(self, frames):
D
dengkaipeng 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        videolen = len(frames)
        average_dur = int(videolen / self.seg_num)
        
        imgs = []
        for i in range(self.seg_num):
            idx = 0
            if self.mode == 'train':
                if average_dur >= self.seg_len:
                    idx = random.randint(0, average_dur - self.seg_len)
                    idx += i * average_dur
                elif average_dur >= 1:
                    idx += i * average_dur
                else:
                    idx = i
            else:
                if average_dur >= self.seg_len:
                    idx = (average_dur - self.seg_len) // 2
                    idx += i * average_dur
                elif average_dur >= 1:
                    idx += i * average_dur
                else:
                    idx = i
            
            for jj in range(idx, idx + self.seg_len):
                imgbuf = frames[int(jj % videolen)]
                img = self._imageloader(imgbuf)
                imgs.append(img)
        
        return imgs
D
dengkaipeng 已提交
160 161

    def _imageloader(self, buf):
D
dengkaipeng 已提交
162 163 164 165 166 167
        if isinstance(buf, str):
            img = Image.open(StringIO(buf))
        else:
            img = Image.open(BytesIO(buf))
        
        return img.convert('RGB')
D
dengkaipeng 已提交
168