reader.py 6.0 KB
Newer Older
H
huangjun12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import numpy as np
import json
import logging
import os
import sys

sys.path.append('../')

from distributed import DistributedBatchSampler
D
dengkaipeng 已提交
25
from paddle.io import Dataset, DataLoader
H
huangjun12 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

logger = logging.getLogger(__name__)

from config_utils import *
from bmn_utils import iou_with_anchors, ioa_with_anchors

DATATYPE = "float32"


class BmnDataset(Dataset):
    def __init__(self, cfg, mode):
        self.mode = mode
        self.tscale = cfg.MODEL.tscale  # 100
        self.dscale = cfg.MODEL.dscale  # 100
        self.anno_file = cfg.MODEL.anno_file
        self.feat_path = cfg.MODEL.feat_path
        self.file_list = cfg.INFER.filelist
        self.subset = cfg[mode.upper()]['subset']
        self.tgap = 1. / self.tscale

        self.get_dataset_dict()
        self.get_match_map()

    def __getitem__(self, index):
        video_name = self.video_list[index]
        video_idx = self.video_list.index(video_name)
        video_feat = self.load_file(video_name)
        if self.mode == 'infer':
            return video_feat, video_idx
        else:
            gt_iou_map, gt_start, gt_end = self.get_video_label(video_name)
            if self.mode == 'train' or self.mode == 'valid':
                return video_feat, gt_iou_map, gt_start, gt_end
            elif self.mode == 'test':
                return video_feat, gt_iou_map, gt_start, gt_end, video_idx

    def __len__(self):
        return len(self.video_list)

    def get_dataset_dict(self):
        assert (
            os.path.exists(self.feat_path)), "Input feature path not exists"
        assert (os.listdir(self.feat_path)), "No feature file  in feature path"
        self.video_dict = {}
        if self.mode == "infer":
            annos = json.load(open(self.file_list))
            for video_name in annos.keys():
                self.video_dict[video_name] = annos[video_name]
        else:
            annos = json.load(open(self.anno_file))
            for video_name in annos.keys():
                video_subset = annos[video_name]["subset"]
                if self.subset in video_subset:
                    self.video_dict[video_name] = annos[video_name]
        self.video_list = list(self.video_dict.keys())
        self.video_list.sort()
        print("%s subset video numbers: %d" %
              (self.subset, len(self.video_list)))
        video_name_set = set(
            [video_name + '.npy' for video_name in self.video_list])
        assert (video_name_set.intersection(set(os.listdir(self.feat_path))) ==
                video_name_set), "Input feature not exists in feature path"

    def get_match_map(self):
        match_map = []
        for idx in range(self.tscale):
            tmp_match_window = []
            xmin = self.tgap * idx
            for jdx in range(1, self.tscale + 1):
                xmax = xmin + self.tgap * jdx
                tmp_match_window.append([xmin, xmax])
            match_map.append(tmp_match_window)
        match_map = np.array(match_map)
        match_map = np.transpose(match_map, [1, 0, 2])
        match_map = np.reshape(match_map, [-1, 2])
        self.match_map = match_map
        self.anchor_xmin = [self.tgap * i for i in range(self.tscale)]
        self.anchor_xmax = [self.tgap * i for i in range(1, self.tscale + 1)]

    def get_video_label(self, video_name):
        video_info = self.video_dict[video_name]
        video_second = video_info['duration_second']
        video_labels = video_info['annotations']

        gt_bbox = []
        gt_iou_map = []
        for gt in video_labels:
            tmp_start = max(min(1, gt["segment"][0] / video_second), 0)
            tmp_end = max(min(1, gt["segment"][1] / video_second), 0)
            gt_bbox.append([tmp_start, tmp_end])
            tmp_gt_iou_map = iou_with_anchors(
                self.match_map[:, 0], self.match_map[:, 1], tmp_start, tmp_end)
            tmp_gt_iou_map = np.reshape(tmp_gt_iou_map,
                                        [self.dscale, self.tscale])
            gt_iou_map.append(tmp_gt_iou_map)
        gt_iou_map = np.array(gt_iou_map)
        gt_iou_map = np.max(gt_iou_map, axis=0)

        gt_bbox = np.array(gt_bbox)
        gt_xmins = gt_bbox[:, 0]
        gt_xmaxs = gt_bbox[:, 1]
        gt_len_small = 3 * self.tgap
        gt_start_bboxs = np.stack(
            (gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1)
        gt_end_bboxs = np.stack(
            (gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1)

        match_score_start = []
        for jdx in range(len(self.anchor_xmin)):
            match_score_start.append(
                np.max(
                    ioa_with_anchors(self.anchor_xmin[jdx], self.anchor_xmax[
                        jdx], gt_start_bboxs[:, 0], gt_start_bboxs[:, 1])))
        match_score_end = []
        for jdx in range(len(self.anchor_xmin)):
            match_score_end.append(
                np.max(
                    ioa_with_anchors(self.anchor_xmin[jdx], self.anchor_xmax[
                        jdx], gt_end_bboxs[:, 0], gt_end_bboxs[:, 1])))

        gt_start = np.array(match_score_start)
        gt_end = np.array(match_score_end)
        return gt_iou_map.astype(DATATYPE), gt_start.astype(
            DATATYPE), gt_end.astype(DATATYPE)

    def load_file(self, video_name):
        file_name = video_name + ".npy"
        file_path = os.path.join(self.feat_path, file_name)
        video_feat = np.load(file_path)
        video_feat = video_feat.T
        video_feat = video_feat.astype("float32")
        return video_feat