transforms.py 8.6 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import traceback
import numpy as np
from PIL import Image

import logging
logger = logging.getLogger(__name__)

__all__ = ['GroupScale', 'GroupMultiScaleCrop', 'GroupRandomCrop',
           'GroupRandomFlip', 'GroupCenterCrop', 'NormalizeImage',
           'Compose']


class Compose(object):
    def __init__(self, transforms=[]):
        self.transforms = transforms

    def __call__(self, *data):
        for f in self.transforms:
            try:
                data = f(*data)
            except Exception as e:
                stack_info = traceback.format_exc()
                logger.info("fail to perform transform [{}] with error: "
                        "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data


class GroupScale(object):
    """
    Group scale image

    Args:
        target_size (int): image resize target size
    """
    def __init__(self, target_size=224):
        self.target_size = target_size

    def __call__(self, imgs, label):
D
dengkaipeng 已提交
55 56 57 58 59
        resized_imgs = []
        for i in range(len(imgs)):
            img = imgs[i]
            w, h = img.size
            if (w <= h and w == self.target_size) or \
D
dengkaipeng 已提交
60
                    (h <= w and h == self.target_size):
D
dengkaipeng 已提交
61 62
                resized_imgs.append(img)
                continue
D
dengkaipeng 已提交
63

D
dengkaipeng 已提交
64 65 66 67 68 69 70 71 72 73
            if w < h:
                ow = self.target_size
                oh = int(self.target_size * 4.0 / 3.0)
                resized_imgs.append(img.resize((ow, oh), Image.BILINEAR))
            else:
                oh = self.target_size
                ow = int(self.target_size * 4.0 / 3.0)
                resized_imgs.append(img.resize((ow, oh), Image.BILINEAR))
        
        return resized_imgs, label
D
dengkaipeng 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


class GroupMultiScaleCrop(object):
    """
    FIXME: add comments
    """
    def __init__(self,
                 short_size=256,
                 scales=None,
                 max_distort=1,
                 fix_crop=True,
                 more_fix_crop=True):
        self.short_size = short_size
        self.scales = scales if scales is not None \
                        else [1, .875, .75, .66]
        self.max_distort = max_distort
        self.fix_crop = fix_crop
        self.more_fix_crop = more_fix_crop

    def __call__(self, imgs, label):
D
dengkaipeng 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        input_size = [self.short_size, self.short_size]
        im_size = imgs[0].size
        
        # get random crop offset
        def _sample_crop_size(im_size):
            image_w, image_h = im_size[0], im_size[1]
            
            base_size = min(image_w, image_h)
            crop_sizes = [int(base_size * x) for x in self.scales]
            crop_h = [
                input_size[1] if abs(x - input_size[1]) < 3 else x
                for x in crop_sizes
            ]
            crop_w = [
                input_size[0] if abs(x - input_size[0]) < 3 else x
                for x in crop_sizes
            ]
            
            pairs = []
            for i, h in enumerate(crop_h):
                for j, w in enumerate(crop_w):
                    if abs(i - j) <= self.max_distort:
                        pairs.append((w, h))
            crop_pair = random.choice(pairs)
            if not self.fix_crop:
                w_offset = np.random.randint(0, image_w - crop_pair[0])
                h_offset = np.random.randint(0, image_h - crop_pair[1])
            else:
                w_step = (image_w - crop_pair[0]) / 4
                h_step = (image_h - crop_pair[1]) / 4
                
                ret = list()
                ret.append((0, 0))  # upper left
                if w_step != 0:
                    ret.append((4 * w_step, 0))  # upper right
                if h_step != 0:
                    ret.append((0, 4 * h_step))  # lower left
                if h_step != 0 and w_step != 0:
                    ret.append((4 * w_step, 4 * h_step))  # lower right
                if h_step != 0 or w_step != 0:
                    ret.append((2 * w_step, 2 * h_step))  # center
                
                if self.more_fix_crop:
                    ret.append((0, 2 * h_step))  # center left
                    ret.append((4 * w_step, 2 * h_step))  # center right
                    ret.append((2 * w_step, 4 * h_step))  # lower center
                    ret.append((2 * w_step, 0 * h_step))  # upper center
                    
                    ret.append((1 * w_step, 1 * h_step))  # upper left quarter
                    ret.append((3 * w_step, 1 * h_step))  # upper right quarter
                    ret.append((1 * w_step, 3 * h_step))  # lower left quarter
                    ret.append((3 * w_step, 3 * h_step))  # lower righ quarter
                
                w_offset, h_offset = random.choice(ret)
            
            return crop_pair[0], crop_pair[1], w_offset, h_offset
        
        crop_w, crop_h, offset_w, offset_h = _sample_crop_size(im_size)
        crop_imgs = [
            img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h))
            for img in imgs
        ]
        ret_imgs = [
            img.resize((input_size[0], input_size[1]), Image.BILINEAR)
            for img in crop_imgs
        ]

        return ret_imgs, label
D
dengkaipeng 已提交
162 163 164 165 166 167 168


class GroupRandomCrop(object):
    def __init__(self, target_size=224):
        self.target_size = target_size

    def __call__(self, imgs, label):
D
dengkaipeng 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        w, h = imgs[0].size
        th, tw = self.target_size, self.target_size
        
        assert (w >= self.target_size) and (h >= self.target_size), \
            "image width({}) and height({}) should be larger than " \
            "crop size".format(w, h, self.target_size)
        
        out_images = []
        x1 = np.random.randint(0, w - tw)
        y1 = np.random.randint(0, h - th)
        
        for img in imgs:
            if w == tw and h == th:
                out_images.append(img)
            else:
                out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
        
        return out_images, label
D
dengkaipeng 已提交
187 188 189 190


class GroupRandomFlip(object):
    def __call__(self, imgs, label):
D
dengkaipeng 已提交
191 192 193 194 195 196
        v = np.random.random()
        if v < 0.5:
            ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in imgs]
            return ret, label
        else:
            return imgs, label 
D
dengkaipeng 已提交
197 198 199 200 201 202 203


class GroupCenterCrop(object):
    def __init__(self, target_size=224):
        self.target_size = target_size

    def __call__(self, imgs, label):
D
dengkaipeng 已提交
204 205 206 207 208 209 210 211 212 213 214 215
        crop_imgs = []
        for img in imgs:
            w, h = img.size
            th, tw = self.target_size, self.target_size
            assert (w >= self.target_size) and (h >= self.target_size), \
                "image width({}) and height({}) should be larger " \
                "than crop size".format(w, h, self.target_size)
            x1 = int(round((w - tw) / 2.))
            y1 = int(round((h - th) / 2.))
            crop_imgs.append(img.crop((x1, y1, x1 + tw, y1 + th)))
        
        return crop_imgs, label 
D
dengkaipeng 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231


class NormalizeImage(object):
    def __init__(self,
                 target_size=224,
                 img_mean=[0.485, 0.456, 0.406],
                 img_std=[0.229, 0.224, 0.225],
                 seg_num=8,
                 seg_len=1):
        self.target_size = target_size
        self.img_mean = np.array(img_mean).reshape((3, 1, 1)).astype('float32')
        self.img_std = np.array(img_std).reshape((3, 1, 1)).astype('float32')
        self.seg_num = seg_num
        self.seg_len = seg_len

    def __call__(self, imgs, label):
D
dengkaipeng 已提交
232 233
        np_imgs = (np.array(imgs[0]).astype('float32').transpose(
            (2, 0, 1))).reshape(1, 3, self.target_size,
D
dengkaipeng 已提交
234
            self.target_size) / 255
D
dengkaipeng 已提交
235 236 237
        for i in range(len(imgs) - 1):
            img = (np.array(imgs[i + 1]).astype('float32').transpose(
                (2, 0, 1))).reshape(1, 3, self.target_size,
D
dengkaipeng 已提交
238
                self.target_size) / 255
D
dengkaipeng 已提交
239 240 241 242 243 244 245
            np_imgs = np.concatenate((np_imgs, img))
        
        np_imgs -= self.img_mean
        np_imgs /= self.img_std
        np_imgs = np.reshape(np_imgs, (self.seg_num, self.seg_len * 3,
                             self.target_size, self.target_size))
        
D
dengkaipeng 已提交
246
        return np_imgs, label