eval.py 5.1 KB
Newer Older
Q
qingqing01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import argparse
import functools

import paddle.fluid.profiler as profiler
import paddle.fluid as fluid

from hapi.model import Input, set_device
Q
qingqing01 已提交
23
from hapi.vision.transforms import BatchCompose
Q
qingqing01 已提交
24 25

from utility import add_arguments, print_arguments
26
from utility import SeqAccuracy, LoggerCallBack, SeqBeamAccuracy
Q
qingqing01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
from utility import postprocess
from seq2seq_attn import Seq2SeqAttModel, Seq2SeqAttInferModel, WeightCrossEntropy
import data

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',        int,   32,                 "Minibatch size.")
add_arg('test_images',       str,   None,               "The directory of images to be used for test.")
add_arg('test_list',         str,   None,               "The list file of images to be used for training.")
add_arg('init_model',        str,   'checkpoint/final', "The init model file of directory.")
add_arg('use_gpu',           bool,  True,               "Whether use GPU to train.")
add_arg('encoder_size',      int,   200,                "Encoder size.")
add_arg('decoder_size',      int,   128,                "Decoder size.")
add_arg('embedding_dim',     int,   128,                "Word vector dim.")
add_arg('num_classes',       int,   95,                 "Number classes.")
add_arg('beam_size',         int,   0,                  "If set beam size, will use beam search.")
add_arg('dynamic',           bool,  False,              "Whether to use dygraph.")
# yapf: enable


def main(FLAGS):
    device = set_device("gpu" if FLAGS.use_gpu else "cpu")
    fluid.enable_dygraph(device) if FLAGS.dynamic else None
    model = Seq2SeqAttModel(
        encoder_size=FLAGS.encoder_size,
        decoder_size=FLAGS.decoder_size,
        emb_dim=FLAGS.embedding_dim,
        num_classes=FLAGS.num_classes)

    # yapf: disable
    inputs = [
        Input([None, 1, 48, 384], "float32", name="pixel"),
        Input([None, None], "int64", name="label_in")
    ]
    labels = [
        Input([None, None], "int64", name="label_out"),
        Input([None, None], "float32", name="mask")
    ]
    # yapf: enable

    model.prepare(
        loss_function=WeightCrossEntropy(),
        metrics=SeqAccuracy(),
        inputs=inputs,
        labels=labels,
        device=device)
    model.load(FLAGS.init_model)

    test_dataset = data.test()
Q
qingqing01 已提交
77
    test_collate_fn = BatchCompose(
Q
qingqing01 已提交
78
        [data.Resize(), data.Normalize(), data.PadTarget()])
Q
qingqing01 已提交
79
    test_sampler = data.BatchSampler(
Q
qingqing01 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93
        test_dataset,
        batch_size=FLAGS.batch_size,
        drop_last=False,
        shuffle=False)
    test_loader = fluid.io.DataLoader(
        test_dataset,
        batch_sampler=test_sampler,
        places=device,
        num_workers=0,
        return_list=True,
        collate_fn=test_collate_fn)

    model.evaluate(
        eval_data=test_loader,
94
        callbacks=[LoggerCallBack(10, 2, FLAGS.batch_size)])
Q
qingqing01 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125


def beam_search(FLAGS):
    device = set_device("gpu" if FLAGS.use_gpu else "cpu")
    fluid.enable_dygraph(device) if FLAGS.dynamic else None
    model = Seq2SeqAttInferModel(
        encoder_size=FLAGS.encoder_size,
        decoder_size=FLAGS.decoder_size,
        emb_dim=FLAGS.embedding_dim,
        num_classes=FLAGS.num_classes,
        beam_size=FLAGS.beam_size)

    inputs = [
        Input(
            [None, 1, 48, 384], "float32", name="pixel"), Input(
                [None, None], "int64", name="label_in")
    ]
    labels = [
        Input(
            [None, None], "int64", name="label_out"), Input(
                [None, None], "float32", name="mask")
    ]
    model.prepare(
        loss_function=None,
        metrics=SeqBeamAccuracy(),
        inputs=inputs,
        labels=labels,
        device=device)
    model.load(FLAGS.init_model)

    test_dataset = data.test()
Q
qingqing01 已提交
126
    test_collate_fn = BatchCompose(
Q
qingqing01 已提交
127
        [data.Resize(), data.Normalize(), data.PadTarget()])
Q
qingqing01 已提交
128
    test_sampler = data.BatchSampler(
Q
qingqing01 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142
        test_dataset,
        batch_size=FLAGS.batch_size,
        drop_last=False,
        shuffle=False)
    test_loader = fluid.io.DataLoader(
        test_dataset,
        batch_sampler=test_sampler,
        places=device,
        num_workers=0,
        return_list=True,
        collate_fn=test_collate_fn)

    model.evaluate(
        eval_data=test_loader,
143
        callbacks=[LoggerCallBack(10, 2, FLAGS.batch_size)])
Q
qingqing01 已提交
144 145 146 147 148 149 150 151 152


if __name__ == '__main__':
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    if FLAGS.beam_size:
        beam_search(FLAGS)
    else:
        main(FLAGS)