layers.py 4.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Conv2DTranspose, BatchNorm

# cudnn is not better when batch size is 1.
use_cudnn = False
import numpy as np


class ConvBN(fluid.dygraph.Layer):
    """docstring for Conv2D"""

    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 stddev=0.02,
                 norm=True,
                 is_test=False,
                 act='leaky_relu',
                 relufactor=0.0,
                 use_bias=False):
        super(ConvBN, self).__init__()

        pattr = fluid.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=stddev))
        self.conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            use_cudnn=use_cudnn,
            param_attr=pattr,
            bias_attr=use_bias)
        if norm:
            self.bn = BatchNorm(
                num_filters,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.NormalInitializer(1.0,
                                                                    0.02)),
                bias_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Constant(0.0)),
                is_test=False,
                trainable_statistics=True)
        self.relufactor = relufactor
        self.norm = norm
        self.act = act

    def forward(self, inputs):
        conv = self.conv(inputs)
        if self.norm:
            conv = self.bn(conv)

        if self.act == 'leaky_relu':
            conv = fluid.layers.leaky_relu(conv, alpha=self.relufactor)
        elif self.act == 'relu':
            conv = fluid.layers.relu(conv)
        else:
            conv = conv

        return conv


class DeConvBN(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=[0, 0],
                 outpadding=[0, 0, 0, 0],
                 stddev=0.02,
                 act='leaky_relu',
                 norm=True,
                 is_test=False,
                 relufactor=0.0,
                 use_bias=False):
        super(DeConvBN, self).__init__()

        pattr = fluid.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=stddev))
        self._deconv = Conv2DTranspose(
            num_channels,
            num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            param_attr=pattr,
            bias_attr=use_bias)
        if norm:
            self.bn = BatchNorm(
                num_filters,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.NormalInitializer(1.0,
                                                                    0.02)),
                bias_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Constant(0.0)),
                is_test=False,
                trainable_statistics=True)
        self.outpadding = outpadding
        self.relufactor = relufactor
        self.use_bias = use_bias
        self.norm = norm
        self.act = act

    def forward(self, inputs):
        conv = self._deconv(inputs)
        conv = fluid.layers.pad2d(
            conv, paddings=self.outpadding, mode='constant', pad_value=0.0)

        if self.norm:
            conv = self.bn(conv)

        if self.act == 'leaky_relu':
            conv = fluid.layers.leaky_relu(conv, alpha=self.relufactor)
        elif self.act == 'relu':
            conv = fluid.layers.relu(conv)
        else:
            conv = conv

        return conv