style_transfer.py 5.5 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5
import os
import argparse
import numpy as np
import matplotlib.pyplot as plt

L
LielinJiang 已提交
6
from paddle.incubate.hapi.model import Model, Loss
L
LielinJiang 已提交
7

L
LielinJiang 已提交
8 9
from paddle.incubate.hapi.vision.models import vgg16
from paddle.incubate.hapi.vision.transforms import transforms
L
LielinJiang 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
from paddle import fluid
from paddle.fluid.io import Dataset

import cv2
import copy


def load_image(image_path, max_size=400, shape=None):
    image = cv2.imread(image_path)
    image = image.astype('float32') / 255.0
    size = shape if shape is not None else max_size if max(
        image.shape[:2]) > max_size else max(image.shape[:2])

    transform = transforms.Compose([
        transforms.Resize(size), transforms.Permute(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
27
    image = transform(image)[np.newaxis, :3, :, :]
L
LielinJiang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    image = fluid.dygraph.to_variable(image)
    return image


def image_restore(image):
    image = np.squeeze(image.numpy(), 0)
    image = image.transpose(1, 2, 0)
    image = image * np.array((0.229, 0.224, 0.225)) + np.array(
        (0.485, 0.456, 0.406))

    image = image.clip(0, 1)
    return image


class StyleTransferModel(Model):
    def __init__(self):
        super(StyleTransferModel, self).__init__()
        # pretrained设置为true,会自动下载imagenet上的预训练权重并加载
        vgg = vgg16(pretrained=True)
        self.base_model = vgg.features
        for p in self.base_model.parameters():
            p.stop_gradient = True
        self.layers = {
            '0': 'conv1_1',
            '3': 'conv2_1',
            '6': 'conv3_1',
            '10': 'conv4_1',
            '11': 'conv4_2',  ## content representation
            '14': 'conv5_1'
        }

    def forward(self, image):
        outputs = []
        for name, layer in self.base_model.named_sublayers():
            image = layer(image)
            if name in self.layers:
                outputs.append(image)
        return outputs


class StyleTransferLoss(Loss):
    def __init__(self,
                 content_loss_weight=1,
                 style_loss_weight=1e5,
                 style_weights=[1.0, 0.8, 0.5, 0.3, 0.1]):
        super(StyleTransferLoss, self).__init__()
        self.content_loss_weight = content_loss_weight
        self.style_loss_weight = style_loss_weight
        self.style_weights = style_weights

    def forward(self, outputs, labels):
        content_features = labels[-1]
        style_features = labels[:-1]

        # 计算图像内容相似度的loss
        content_loss = fluid.layers.mean((outputs[-2] - content_features)**2)

        # 计算风格相似度的loss
        style_loss = 0
        style_grams = [self.gram_matrix(feat) for feat in style_features]
        style_weights = self.style_weights
        for i, weight in enumerate(style_weights):
            target_gram = self.gram_matrix(outputs[i])
            layer_loss = weight * fluid.layers.mean((target_gram - style_grams[
                i])**2)
            b, d, h, w = outputs[i].shape
            style_loss += layer_loss / (d * h * w)

        total_loss = self.content_loss_weight * content_loss + self.style_loss_weight * style_loss
        return total_loss

    def gram_matrix(self, A):
        if len(A.shape) == 4:
            _, c, h, w = A.shape
            A = fluid.layers.reshape(A, (c, h * w))
        GA = fluid.layers.matmul(A, fluid.layers.transpose(A, [1, 0]))

        return GA


def main():
    # 启动动态图模式
    fluid.enable_dygraph()

    content = load_image(FLAGS.content_image)
    style = load_image(FLAGS.style_image, shape=tuple(content.shape[-2:]))

    model = StyleTransferModel()
    style_loss = StyleTransferLoss()

    # 使用内容图像初始化要生成的图像
    target = Model.create_parameter(model, shape=content.shape)
    target.set_value(content.numpy())

    optimizer = fluid.optimizer.Adam(
        parameter_list=[target], learning_rate=FLAGS.lr)
    model.prepare(optimizer, style_loss)

126 127
    content_fetures = model.test_batch(content)
    style_features = model.test_batch(style)
L
LielinJiang 已提交
128 129 130 131 132 133 134

    # 将两个特征组合,作为损失函数的label传给模型
    feats = style_features + [content_fetures[-2]]

    # 训练5000个step,每500个step画一下生成的图像查看效果
    steps = FLAGS.steps
    for i in range(steps):
135
        outs = model.train_batch(target, feats)
L
LielinJiang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        if i % 500 == 0:
            print('iters:', i, 'loss:', outs[0][0])

    if not os.path.exists(FLAGS.save_dir):
        os.makedirs(FLAGS.save_dir)

    # 保存生成好的图像
    name = FLAGS.content_image.split(os.sep)[-1]
    output_path = os.path.join(FLAGS.save_dir, 'generated_' + name)
    cv2.imwrite(output_path,
                cv2.cvtColor((image_restore(target) * 255).astype('uint8'),
                             cv2.COLOR_RGB2BGR))


if __name__ == '__main__':
    parser = argparse.ArgumentParser("Resnet Training on ImageNet")
    parser.add_argument(
        "--content-image",
        type=str,
        default='./images/chicago_cropped.jpg',
        help="content image")
    parser.add_argument(
        "--style-image",
        type=str,
        default='./images/Starry-Night-by-Vincent-Van-Gogh-painting.jpg',
        help="style image")
    parser.add_argument(
        "--save-dir", type=str, default='./output', help="output dir")
    parser.add_argument(
        "--steps", default=5000, type=int, help="number of steps to run")
    parser.add_argument(
        '--lr',
        '--learning-rate',
        default=1e-3,
        type=float,
        metavar='LR',
        help='initial learning rate')
    FLAGS = parser.parse_args()
174
    main()