modeling.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
D
dengkaipeng 已提交
19
from paddle.fluid.dygraph.nn import Conv2D, BatchNorm
20 21 22 23 24
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from hapi.model import Model, Loss
from hapi.download import get_weights_path
D
dengkaipeng 已提交
25
from hapi.vision.models import darknet53
26 27 28 29 30 31 32 33 34 35

__all__ = ['YoloLoss', 'YOLOv3', 'yolov3_darknet53']

# {num_layers: (url, md5)}
pretrain_infos = {
    53: ('https://paddlemodels.bj.bcebos.com/hapi/yolov3_darknet53.pdparams',
         'aed7dd45124ff2e844ae3bd5ba6c91d2')
}


D
dengkaipeng 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size=3,
                 stride=1,
                 groups=1,
                 padding=0,
                 act="leaky"):
        super(ConvBNLayer, self).__init__()

        self.conv = Conv2D(
            num_channels=ch_in,
            num_filters=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Normal(0., 0.02)),
            bias_attr=False,
            act=None)
        self.batch_norm = BatchNorm(
            num_channels=ch_out,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Normal(0., 0.02),
                regularizer=L2Decay(0.)),
            bias_attr=ParamAttr(
                initializer=fluid.initializer.Constant(0.0),
                regularizer=L2Decay(0.)))

        self.act = act

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.batch_norm(out)
        if self.act == 'leaky':
            out = fluid.layers.leaky_relu(x=out, alpha=0.1)
        return out

L
LielinJiang 已提交
76

77 78 79 80 81 82 83 84
class YoloDetectionBlock(fluid.dygraph.Layer):
    def __init__(self, ch_in, channel):
        super(YoloDetectionBlock, self).__init__()

        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2".format(channel)

        self.conv0 = ConvBNLayer(
L
LielinJiang 已提交
85
            ch_in=ch_in, ch_out=channel, filter_size=1, stride=1, padding=0)
86 87
        self.conv1 = ConvBNLayer(
            ch_in=channel,
L
LielinJiang 已提交
88
            ch_out=channel * 2,
89 90 91 92
            filter_size=3,
            stride=1,
            padding=1)
        self.conv2 = ConvBNLayer(
L
LielinJiang 已提交
93
            ch_in=channel * 2,
94 95 96 97 98 99
            ch_out=channel,
            filter_size=1,
            stride=1,
            padding=0)
        self.conv3 = ConvBNLayer(
            ch_in=channel,
L
LielinJiang 已提交
100
            ch_out=channel * 2,
101 102 103 104
            filter_size=3,
            stride=1,
            padding=1)
        self.route = ConvBNLayer(
L
LielinJiang 已提交
105
            ch_in=channel * 2,
106 107 108 109 110 111
            ch_out=channel,
            filter_size=1,
            stride=1,
            padding=0)
        self.tip = ConvBNLayer(
            ch_in=channel,
L
LielinJiang 已提交
112
            ch_out=channel * 2,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
            filter_size=3,
            stride=1,
            padding=1)

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = self.conv1(out)
        out = self.conv2(out)
        out = self.conv3(out)
        route = self.route(out)
        tip = self.tip(route)
        return route, tip


class YOLOv3(Model):
    """YOLOv3 model from
    `"YOLOv3: An Incremental Improvement" <https://arxiv.org/abs/1804.02767>`_

    Args:
        num_classes (int): class number, default 80.
        model_mode (str): 'train', 'eval', 'test' mode, network structure
            will be diffrent in the output layer and data, in 'train' mode,
            no output layer append, in 'eval' and 'test', output feature
            map will be decode to predictions by 'fluid.layers.yolo_box',
            in 'eval' mode, return feature maps and predictions, in 'test'
            mode, only return predictions. Default 'train'.

    """

    def __init__(self, num_classes=80, model_mode='train'):
        super(YOLOv3, self).__init__()
        self.num_classes = num_classes
        assert str.lower(model_mode) in ['train', 'eval', 'test'], \
            "model_mode should be 'train' 'eval' or 'test', but got " \
            "{}".format(model_mode)
        self.model_mode = str.lower(model_mode)
L
LielinJiang 已提交
149 150 151 152
        self.anchors = [
            10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198,
            373, 326
        ]
153 154 155 156 157 158 159
        self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
        self.valid_thresh = 0.005
        self.nms_thresh = 0.45
        self.nms_topk = 400
        self.nms_posk = 100
        self.draw_thresh = 0.5

L
LielinJiang 已提交
160 161 162 163
        self.backbone = darknet53(
            pretrained=(model_mode == 'train'),
            with_pool=False,
            num_classes=-1)
164 165 166 167 168 169 170 171 172 173 174 175 176 177
        self.block_outputs = []
        self.yolo_blocks = []
        self.route_blocks = []

        for idx, num_chan in enumerate([1024, 768, 384]):
            yolo_block = self.add_sublayer(
                "yolo_detecton_block_{}".format(idx),
                YoloDetectionBlock(num_chan, 512 // (2**idx)))
            self.yolo_blocks.append(yolo_block)

            num_filters = len(self.anchor_masks[idx]) * (self.num_classes + 5)

            block_out = self.add_sublayer(
                "block_out_{}".format(idx),
L
LielinJiang 已提交
178 179 180 181 182 183 184 185 186 187
                Conv2D(
                    num_channels=1024 // (2**idx),
                    num_filters=num_filters,
                    filter_size=1,
                    act=None,
                    param_attr=ParamAttr(
                        initializer=fluid.initializer.Normal(0., 0.02)),
                    bias_attr=ParamAttr(
                        initializer=fluid.initializer.Constant(0.0),
                        regularizer=L2Decay(0.))))
188 189 190 191
            self.block_outputs.append(block_out)
            if idx < 2:
                route = self.add_sublayer(
                    "route2_{}".format(idx),
L
LielinJiang 已提交
192 193 194 195 196
                    ConvBNLayer(
                        ch_in=512 // (2**idx),
                        ch_out=256 // (2**idx),
                        filter_size=1,
                        act='leaky_relu'))
197 198
                self.route_blocks.append(route)

L
LielinJiang 已提交
199 200 201 202 203 204 205 206 207 208 209 210
    def extract_feats(self, inputs):
        out = self.backbone.conv0(inputs)
        out = self.backbone.downsample0(out)
        blocks = []
        for i, conv_block_i in enumerate(
                self.backbone.darknet53_conv_block_list):
            out = conv_block_i(out)
            blocks.append(out)
            if i < len(self.backbone.stages) - 1:
                out = self.backbone.downsample_list[i](out)
        return blocks[-1:-4:-1]

211 212 213 214 215 216
    def forward(self, img_id, img_shape, inputs):
        outputs = []
        boxes = []
        scores = []
        downsample = 32

L
LielinJiang 已提交
217
        feats = self.extract_feats(inputs)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        route = None
        for idx, feat in enumerate(feats):
            if idx > 0:
                feat = fluid.layers.concat(input=[route, feat], axis=1)
            route, tip = self.yolo_blocks[idx](feat)
            block_out = self.block_outputs[idx](tip)
            outputs.append(block_out)

            if idx < 2:
                route = self.route_blocks[idx](route)
                route = fluid.layers.resize_nearest(route, scale=2)

            if self.model_mode != 'train':
                anchor_mask = self.anchor_masks[idx]
                mask_anchors = []
                for m in anchor_mask:
                    mask_anchors.append(self.anchors[2 * m])
                    mask_anchors.append(self.anchors[2 * m + 1])
                b, s = fluid.layers.yolo_box(
                    x=block_out,
                    img_size=img_shape,
                    anchors=mask_anchors,
                    class_num=self.num_classes,
                    conf_thresh=self.valid_thresh,
                    downsample_ratio=downsample)

                boxes.append(b)
                scores.append(fluid.layers.transpose(s, perm=[0, 2, 1]))

            downsample //= 2

        if self.model_mode == 'train':
            return outputs

L
LielinJiang 已提交
252 253 254 255 256 257 258 259 260 261 262 263
        preds = [
            img_id, fluid.layers.multiclass_nms(
                bboxes=fluid.layers.concat(
                    boxes, axis=1),
                scores=fluid.layers.concat(
                    scores, axis=2),
                score_threshold=self.valid_thresh,
                nms_top_k=self.nms_topk,
                keep_top_k=self.nms_posk,
                nms_threshold=self.nms_thresh,
                background_label=-1)
        ]
264 265 266 267 268 269 270

        if self.model_mode == 'test':
            return preds

        # model_mode == "eval"
        return outputs + preds

L
LielinJiang 已提交
271

272 273 274 275 276 277
class YoloLoss(Loss):
    def __init__(self, num_classes=80, num_max_boxes=50):
        super(YoloLoss, self).__init__()
        self.num_classes = num_classes
        self.num_max_boxes = num_max_boxes
        self.ignore_thresh = 0.7
L
LielinJiang 已提交
278 279 280 281
        self.anchors = [
            10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198,
            373, 326
        ]
282 283 284 285 286 287 288 289
        self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]

    def forward(self, outputs, labels):
        downsample = 32
        gt_box, gt_label, gt_score = labels
        losses = []

        for idx, out in enumerate(outputs):
L
LielinJiang 已提交
290
            if idx == 3: break  # debug
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
            anchor_mask = self.anchor_masks[idx]
            loss = fluid.layers.yolov3_loss(
                x=out,
                gt_box=gt_box,
                gt_label=gt_label,
                gt_score=gt_score,
                anchor_mask=anchor_mask,
                downsample_ratio=downsample,
                anchors=self.anchors,
                class_num=self.num_classes,
                ignore_thresh=self.ignore_thresh,
                use_label_smooth=True)
            loss = fluid.layers.reduce_mean(loss)
            losses.append(loss)
            downsample //= 2
        return losses


L
LielinJiang 已提交
309 310 311 312
def _yolov3_darknet(num_layers=53,
                    num_classes=80,
                    model_mode='train',
                    pretrained=True):
313 314 315 316 317 318 319 320
    model = YOLOv3(num_classes, model_mode)
    if pretrained:
        assert num_layers in pretrain_infos.keys(), \
                "YOLOv3-DarkNet{} do not have pretrained weights now, " \
                "pretrained should be set as False".format(num_layers)
        weight_path = get_weights_path(*(pretrain_infos[num_layers]))
        assert weight_path.endswith('.pdparams'), \
                "suffix of weight must be .pdparams"
D
dengkaipeng 已提交
321
        model.load(weight_path)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    return model


def yolov3_darknet53(num_classes=80, model_mode='train', pretrained=True):
    """YOLOv3 model with 53-layer DarkNet as backbone
    
    Args:
        num_classes (int): class number, default 80.
        model_mode (str): 'train', 'eval', 'test' mode, network structure
            will be diffrent in the output layer and data, in 'train' mode,
            no output layer append, in 'eval' and 'test', output feature
            map will be decode to predictions by 'fluid.layers.yolo_box',
            in 'eval' mode, return feature maps and predictions, in 'test'
            mode, only return predictions. Default 'train'.
        pretrained (bool): If True, returns a model with pre-trained model
            on COCO, default True
    """
    return _yolov3_darknet(53, num_classes, model_mode, pretrained)