data.py 3.6 KB
Newer Older
Q
qingqing01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import numpy as np
from PIL import Image, ImageOps

23 24
import paddle

Q
qingqing01 已提交
25 26 27 28 29 30 31 32
DATASET = "cityscapes"
A_LIST_FILE = "./data/" + DATASET + "/trainA.txt"
B_LIST_FILE = "./data/" + DATASET + "/trainB.txt"
A_TEST_LIST_FILE = "./data/" + DATASET + "/testA.txt"
B_TEST_LIST_FILE = "./data/" + DATASET + "/testB.txt"
IMAGES_ROOT = "./data/" + DATASET + "/"


D
dengkaipeng 已提交
33
class Cityscapes(paddle.io.Dataset):
Q
qingqing01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    def __init__(self, root_path, file_path, mode='train', return_name=False):
        self.root_path = root_path
        self.file_path = file_path
        self.mode = mode
        self.return_name = return_name
        self.images = [root_path + l for l in open(file_path, 'r').readlines()]

    def _train(self, image):
        ## Resize
        image = image.resize((286, 286), Image.BICUBIC)
        ## RandomCrop
        i = np.random.randint(0, 30)
        j = np.random.randint(0, 30)
        image = image.crop((i, j, i + 256, j + 256))
        # RandomHorizontalFlip
        if np.random.rand() > 0.5:
            image = ImageOps.mirror(image)
        return image

    def __getitem__(self, idx):
        f = self.images[idx].strip("\n\r\t ")
        image = Image.open(f)
        if self.mode == 'train':
            image = self._train(image)
        else:
            image = image.resize((256, 256), Image.BICUBIC)
        # ToTensor
        image = np.array(image).transpose([2, 0, 1]).astype('float32')
        image = image / 255.0
        # Normalize, mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]
        image = (image - 0.5) / 0.5
        if self.return_name:
            return [image], os.path.basename(f)
        else:
            return [image]

    def __len__(self):
        return len(self.images)


def DataA(root=IMAGES_ROOT, fpath=A_LIST_FILE):
    """
    Reader of images with A style for training.
    """
    return Cityscapes(root, fpath)


def DataB(root=IMAGES_ROOT, fpath=B_LIST_FILE):
    """
    Reader of images with B style for training.
    """
    return Cityscapes(root, fpath)


def TestDataA(root=IMAGES_ROOT, fpath=A_TEST_LIST_FILE):
    """
    Reader of images with A style for training.
    """
    return Cityscapes(root, fpath, mode='test', return_name=True)


def TestDataB(root=IMAGES_ROOT, fpath=B_TEST_LIST_FILE):
    """
    Reader of images with B style for training.
    """
    return Cityscapes(root, fpath, mode='test', return_name=True)


class ImagePool(object):
    def __init__(self, pool_size=50):
        self.pool = []
        self.count = 0
        self.pool_size = pool_size

    def get(self, image):
        if self.count < self.pool_size:
            self.pool.append(image)
            self.count += 1
            return image
        else:
            p = random.random()
            if p > 0.5:
                random_id = random.randint(0, self.pool_size - 1)
                temp = self.pool[random_id]
                self.pool[random_id] = image
                return temp
            else:
                return image