Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • book
  • 合并请求
  • !355

B
book
  • 项目概览

PaddlePaddle / book

通知 17
Star 4
Fork 0
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 40
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 37
  • Wiki 5
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
B
book
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 40
    • Issue 40
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 37
    • 合并请求 37
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 5
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板

Before training model, It is friendly if paddle can indicate whether the device's memory is enough or not !355

  • Report abuse
!355 已关闭 8月 01, 2017 由 saxon_zh@saxon_zh 创建
#<User:0x00007ff7d2c58178>
  • 概览 0
  • 提交 23
  • 变更 38

Created by: chengduoZH

When I use docker to train image classification model, the training process is killed by the operating system because the device storage is not enough. Just like this:

root@a2f510f45102:/book/03.image_classification# python train.py
I0801 03:08:32.183323    27 Util.cpp:166] commandline:  --use_gpu=False --trainer_count=1
[INFO 2017-08-01 03:08:32,192 layers.py:2188] output for __conv_0__: c = 64, h = 32, w = 32, size = 65536
[INFO 2017-08-01 03:08:32,194 layers.py:2188] output for __conv_1__: c = 64, h = 32, w = 32, size = 65536
[INFO 2017-08-01 03:08:32,196 layers.py:2313] output for __pool_0__: c = 64, h = 16, w = 16, size = 16384
[INFO 2017-08-01 03:08:32,197 layers.py:2188] output for __conv_2__: c = 128, h = 16, w = 16, size = 32768
[INFO 2017-08-01 03:08:32,199 layers.py:2188] output for __conv_3__: c = 128, h = 16, w = 16, size = 32768
[INFO 2017-08-01 03:08:32,201 layers.py:2313] output for __pool_1__: c = 128, h = 8, w = 8, size = 8192
[INFO 2017-08-01 03:08:32,202 layers.py:2188] output for __conv_4__: c = 256, h = 8, w = 8, size = 16384
[INFO 2017-08-01 03:08:32,204 layers.py:2188] output for __conv_5__: c = 256, h = 8, w = 8, size = 16384
[INFO 2017-08-01 03:08:32,205 layers.py:2188] output for __conv_6__: c = 256, h = 8, w = 8, size = 16384
[INFO 2017-08-01 03:08:32,207 layers.py:2313] output for __pool_2__: c = 256, h = 4, w = 4, size = 4096
[INFO 2017-08-01 03:08:32,208 layers.py:2188] output for __conv_7__: c = 512, h = 4, w = 4, size = 8192
[INFO 2017-08-01 03:08:32,210 layers.py:2188] output for __conv_8__: c = 512, h = 4, w = 4, size = 8192
[INFO 2017-08-01 03:08:32,212 layers.py:2188] output for __conv_9__: c = 512, h = 4, w = 4, size = 8192
[INFO 2017-08-01 03:08:32,214 layers.py:2313] output for __pool_3__: c = 512, h = 2, w = 2, size = 2048
[INFO 2017-08-01 03:08:32,215 layers.py:2188] output for __conv_10__: c = 512, h = 2, w = 2, size = 2048
[INFO 2017-08-01 03:08:32,216 layers.py:2188] output for __conv_11__: c = 512, h = 2, w = 2, size = 2048
[INFO 2017-08-01 03:08:32,218 layers.py:2188] output for __conv_12__: c = 512, h = 2, w = 2, size = 2048
[INFO 2017-08-01 03:08:32,220 layers.py:2313] output for __pool_4__: c = 512, h = 1, w = 1, size = 512
[INFO 2017-08-01 03:08:32,225 networks.py:1482] The input order is [image, label]
[INFO 2017-08-01 03:08:32,225 networks.py:1488] The output order is [__classification_cost_0__]
[INFO 2017-08-01 03:08:32,228 layers.py:2188] output for __conv_0__: c = 64, h = 32, w = 32, size = 65536
[INFO 2017-08-01 03:08:32,230 layers.py:2188] output for __conv_1__: c = 64, h = 32, w = 32, size = 65536
[INFO 2017-08-01 03:08:32,231 layers.py:2313] output for __pool_0__: c = 64, h = 16, w = 16, size = 16384
[INFO 2017-08-01 03:08:32,232 layers.py:2188] output for __conv_2__: c = 128, h = 16, w = 16, size = 32768
[INFO 2017-08-01 03:08:32,234 layers.py:2188] output for __conv_3__: c = 128, h = 16, w = 16, size = 32768
[INFO 2017-08-01 03:08:32,236 layers.py:2313] output for __pool_1__: c = 128, h = 8, w = 8, size = 8192
[INFO 2017-08-01 03:08:32,237 layers.py:2188] output for __conv_4__: c = 256, h = 8, w = 8, size = 16384
[INFO 2017-08-01 03:08:32,239 layers.py:2188] output for __conv_5__: c = 256, h = 8, w = 8, size = 16384
[INFO 2017-08-01 03:08:32,240 layers.py:2188] output for __conv_6__: c = 256, h = 8, w = 8, size = 16384
[INFO 2017-08-01 03:08:32,242 layers.py:2313] output for __pool_2__: c = 256, h = 4, w = 4, size = 4096
[INFO 2017-08-01 03:08:32,243 layers.py:2188] output for __conv_7__: c = 512, h = 4, w = 4, size = 8192
[INFO 2017-08-01 03:08:32,245 layers.py:2188] output for __conv_8__: c = 512, h = 4, w = 4, size = 8192
[INFO 2017-08-01 03:08:32,247 layers.py:2188] output for __conv_9__: c = 512, h = 4, w = 4, size = 8192
[INFO 2017-08-01 03:08:32,248 layers.py:2313] output for __pool_3__: c = 512, h = 2, w = 2, size = 2048
[INFO 2017-08-01 03:08:32,249 layers.py:2188] output for __conv_10__: c = 512, h = 2, w = 2, size = 2048
[INFO 2017-08-01 03:08:32,251 layers.py:2188] output for __conv_11__: c = 512, h = 2, w = 2, size = 2048
[INFO 2017-08-01 03:08:32,253 layers.py:2188] output for __conv_12__: c = 512, h = 2, w = 2, size = 2048
[INFO 2017-08-01 03:08:32,255 layers.py:2313] output for __pool_4__: c = 512, h = 1, w = 1, size = 512
[INFO 2017-08-01 03:08:32,258 networks.py:1482] The input order is [image, label]
[INFO 2017-08-01 03:08:32,259 networks.py:1488] The output order is [__classification_cost_0__]
I0801 03:08:32.382684    27 GradientMachine.cpp:86] Initing parameters..
I0801 03:08:33.513288    27 GradientMachine.cpp:93] Init parameters done.
Killed

I think that It will be friendly if paddle can indicate whether the device's memory is enough or not, before training the model

指派人
分配到
审核者
Request review from
无
里程碑
无
分配里程碑
工时统计
标识: paddlepaddle/book!355
Source branch: develop
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7