08.machine_translation infer 时报错
Created by: Alanyh
代码使用train.py中的代码,但是数据集是自己的,训练完成了,但是infer时报错: C++ Callstacks: DataType of Paddle Op sequence_expand Y must be the same. Get (float) != (int64_t) at [/paddle/paddle/fluid/framework/operator.cc:1115]
from future import print_function import os import six
import numpy as np import paddle import paddle.fluid as fluid
dict_size = 29364 source_dict_size = target_dict_size = dict_size word_dim = 512 hidden_dim = 512 decoder_size = hidden_dim max_length = 256 beam_size = 4 batch_size = 64
is_sparse = True model_save_dir = "1_machine_translation.inference.model"
def encoder(): src_word_id = fluid.layers.data( name="src_word_id", shape=[1], dtype='int64', lod_level=1) src_embedding = fluid.layers.embedding( input=src_word_id, size=[source_dict_size, word_dim], dtype='float32', is_sparse=is_sparse,param_attr='shared_w')
fc_forward = fluid.layers.fc(
input=src_embedding, size=hidden_dim * 3, bias_attr=False)
src_forward = fluid.layers.dynamic_gru(input=fc_forward, size=hidden_dim)
fc_backward = fluid.layers.fc(
input=src_embedding, size=hidden_dim * 3, bias_attr=False)
src_backward = fluid.layers.dynamic_gru(
input=fc_backward, size=hidden_dim, is_reverse=True)
encoded_vector = fluid.layers.concat(
input=[src_forward, src_backward], axis=1)
return encoded_vector
def cell(x, hidden, encoder_out, encoder_out_proj): def simple_attention(encoder_vec, encoder_proj, decoder_state): decoder_state_proj = fluid.layers.fc( input=decoder_state, size=decoder_size, bias_attr=False) decoder_state_expand = fluid.layers.sequence_expand( x=decoder_state_proj, y=encoder_proj) mixed_state = fluid.layers.elementwise_add(encoder_proj, decoder_state_expand) attention_weights = fluid.layers.fc( input=mixed_state, size=1, bias_attr=False) attention_weights = fluid.layers.sequence_softmax( input=attention_weights) weigths_reshape = fluid.layers.reshape(x=attention_weights, shape=[-1]) scaled = fluid.layers.elementwise_mul( x=encoder_vec, y=weigths_reshape, axis=0) context = fluid.layers.sequence_pool(input=scaled, pool_type='sum') return context
context = simple_attention(encoder_out, encoder_out_proj, hidden)
out = fluid.layers.fc(
input=[x, context], size=decoder_size * 3, bias_attr=False)
out = fluid.layers.gru_unit(
input=out, hidden=hidden, size=decoder_size * 3)[0]
return out, out
def train_decoder(encoder_out): encoder_last = fluid.layers.sequence_last_step(input=encoder_out) encoder_last_proj = fluid.layers.fc( input=encoder_last, size=decoder_size, act='tanh') # cache the encoder_out's computed result in attention encoder_out_proj = fluid.layers.fc( input=encoder_out, size=decoder_size, bias_attr=False)
trg_language_word = fluid.layers.data(
name="target_language_word", shape=[1], dtype='int64', lod_level=1)
trg_embedding = fluid.layers.embedding(
input=trg_language_word,
size=[target_dict_size, word_dim],
dtype='float32',
is_sparse=is_sparse,param_attr='shared_w')
rnn = fluid.layers.DynamicRNN()
with rnn.block():
x = rnn.step_input(trg_embedding)
pre_state = rnn.memory(init=encoder_last_proj, need_reorder=True)
encoder_out = rnn.static_input(encoder_out)
encoder_out_proj = rnn.static_input(encoder_out_proj)
out, current_state = cell(x, pre_state, encoder_out, encoder_out_proj)
prob = fluid.layers.fc(input=out, size=target_dict_size, act='softmax')
rnn.update_memory(pre_state, current_state)
rnn.output(prob)
return rnn()
def train_model(): encoder_out = encoder() rnn_out = train_decoder(encoder_out) label = fluid.layers.data( name="target_language_next_word", shape=[1], dtype='int64', lod_level=1) cost = fluid.layers.cross_entropy(input=rnn_out, label=label) avg_cost = fluid.layers.mean(cost) return avg_cost
def optimizer_func(): fluid.clip.set_gradient_clip( clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)) lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(hidden_dim, 1000) return fluid.optimizer.Adam( learning_rate=lr_decay, regularization=fluid.regularizer.L2DecayRegularizer( regularization_coeff=1e-4))
def train(use_cuda): train_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): avg_cost = train_model() optimizer = optimizer_func() optimizer.minimize(avg_cost)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
#fluid.io.load_params(exe, model_save_dir, main_program=train_prog)
train_data = paddle.batch(
paddle.reader.shuffle(
train_reader1, buf_size=100000),
batch_size=batch_size)
feeder = fluid.DataFeeder(
feed_list=[
'src_word_id', 'target_language_word', 'target_language_next_word'
],
place=place,
program=train_prog)
exe.run(startup_prog)
EPOCH_NUM = 20
for pass_id in six.moves.xrange(EPOCH_NUM):
batch_id = 0
for data in train_data():
cost = exe.run(
train_prog, feed=feeder.feed(data), fetch_list=[avg_cost])[0]
print('pass_id: %d, batch_id: %d, loss: %f' % (pass_id, batch_id,
cost))
batch_id += 1
fluid.io.save_params(exe, model_save_dir, main_program=train_prog)
def infer_decoder(encoder_out): encoder_last = fluid.layers.sequence_last_step(input=encoder_out) encoder_last_proj = fluid.layers.fc( input=encoder_last, size=decoder_size, act='tanh') encoder_out_proj = fluid.layers.fc( input=encoder_out, size=decoder_size, bias_attr=False)
max_len = fluid.layers.fill_constant(
shape=[1], dtype='int64', value=max_length)
counter = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True)
init_ids = fluid.layers.data(
name="init_ids", shape=[1], dtype="int64", lod_level=2)
init_scores = fluid.layers.data(
name="init_scores", shape=[1], dtype="float32", lod_level=2)
# create and init arrays to save selected ids, scores and states for each step
ids_array = fluid.layers.array_write(init_ids, i=counter)
scores_array = fluid.layers.array_write(init_scores, i=counter)
state_array = fluid.layers.array_write(encoder_last_proj, i=counter)
cond = fluid.layers.less_than(x=counter, y=max_len)
while_op = fluid.layers.While(cond=cond)
with while_op.block():
pre_ids = fluid.layers.array_read(array=ids_array, i=counter)
pre_score = fluid.layers.array_read(array=scores_array, i=counter)
pre_state = fluid.layers.array_read(array=state_array, i=counter)
pre_ids_emb = fluid.layers.embedding(
input=pre_ids,
size=[target_dict_size, word_dim],
dtype='float32',
is_sparse=is_sparse,param_attr='shared_w')
out, current_state = cell(pre_ids_emb, pre_state, encoder_out,
encoder_out_proj)
prob = fluid.layers.fc(
input=current_state, size=target_dict_size, act='softmax')
# beam search
topk_scores, topk_indices = fluid.layers.topk(prob, k=beam_size)
accu_scores = fluid.layers.elementwise_add(
x=fluid.layers.log(topk_scores),
y=fluid.layers.reshape(pre_score, shape=[-1]),
axis=0)
accu_scores = fluid.layers.lod_reset(x=accu_scores, y=pre_ids)
selected_ids, selected_scores = fluid.layers.beam_search(
pre_ids, pre_score, topk_indices, accu_scores, beam_size, end_id=1)
fluid.layers.increment(x=counter, value=1, in_place=True)
# save selected ids and corresponding scores of each step
fluid.layers.array_write(selected_ids, array=ids_array, i=counter)
fluid.layers.array_write(selected_scores, array=scores_array, i=counter)
# update rnn state by sequence_expand acting as gather
current_state = fluid.layers.sequence_expand(current_state,
selected_ids)
fluid.layers.array_write(current_state, array=state_array, i=counter)
current_enc_out = fluid.layers.sequence_expand(encoder_out,
selected_ids)
fluid.layers.assign(current_enc_out, encoder_out)
current_enc_out_proj = fluid.layers.sequence_expand(encoder_out_proj,
selected_ids)
fluid.layers.assign(current_enc_out_proj, encoder_out_proj)
# update conditional variable
length_cond = fluid.layers.less_than(x=counter, y=max_len)
finish_cond = fluid.layers.logical_not(
fluid.layers.is_empty(x=selected_ids))
fluid.layers.logical_and(x=length_cond, y=finish_cond, out=cond)
translation_ids, translation_scores = fluid.layers.beam_search_decode(
ids=ids_array, scores=scores_array, beam_size=beam_size, end_id=1)
return translation_ids, translation_scores
def infer_model(): encoder_out = encoder() translation_ids, translation_scores = infer_decoder(encoder_out) return translation_ids, translation_scores
def infer(use_cuda): infer_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): translation_ids, translation_scores = infer_model()
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
test_data = paddle.batch(
test_reader,
batch_size=batch_size)
src_idx2word = reverse_vocab
trg_idx2word = reverse_vocab
fluid.io.load_params(exe, model_save_dir, main_program=infer_prog)
for data in test_data():
src_word_id = fluid.create_lod_tensor(
data=[x[0] for x in data],
recursive_seq_lens=[[len(x[0]) for x in data]],
place=place)
init_ids = fluid.create_lod_tensor(
data=np.array([[0]] * len(data), dtype='int64'),
recursive_seq_lens=[[1] * len(data)] * 2,
place=place)
init_scores = fluid.create_lod_tensor(
data=np.array([[0.]] * len(data), dtype='float32'),
recursive_seq_lens=[[1] * len(data)] * 2,
place=place)
seq_ids, seq_scores = exe.run(
infer_prog,
feed={
'src_word_id': src_word_id,
'init_ids': init_ids,
'init_scores': init_scores
},
fetch_list=[translation_ids, translation_scores],
return_numpy=False)
# How to parse the results:
# Suppose the lod of seq_ids is:
# [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
# then from lod[0]:
# there are 2 source sentences, beam width is 3.
# from lod[1]:
# the first source sentence has 3 hyps; the lengths are 12, 12, 16
# the second source sentence has 3 hyps; the lengths are 14, 13, 15
hyps = [[] for i in range(len(seq_ids.lod()[0]) - 1)]
scores = [[] for i in range(len(seq_scores.lod()[0]) - 1)]
for i in range(len(seq_ids.lod()[0]) - 1): # for each source sentence
start = seq_ids.lod()[0][i]
end = seq_ids.lod()[0][i + 1]
print("Original sentence:")
print(" ".join([src_idx2word[idx] for idx in data[i][0][1:-1]]))
print("Translated score and sentence:")
for j in range(end - start): # for each candidate
sub_start = seq_ids.lod()[1][start + j]
sub_end = seq_ids.lod()[1][start + j + 1]
hyps[i].append(" ".join([
trg_idx2word[idx]
for idx in np.array(seq_ids)[sub_start:sub_end][1:-1]
]))
scores[i].append(np.array(seq_scores)[sub_end - 1])
print(scores[i][-1], hyps[i][-1].encode('utf8'))
def main(use_cuda): train(use_cuda) #infer(use_cuda)
if name == 'main': use_cuda = False # set to True if training with GPU main(use_cuda) #infer(use_cuda)