Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • book
  • Issue
  • #689

B
book
  • 项目概览

PaddlePaddle / book

通知 17
Star 4
Fork 0
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 40
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 37
  • Wiki 5
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
B
book
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 40
    • Issue 40
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 37
    • 合并请求 37
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 5
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 3月 08, 2019 by saxon_zh@saxon_zhGuest

图片分类出错

Created by: zhenghl1

我使用当前的docker 1.3 版本,运行图片分类示例,出现错误: 代码:

from __future__ import print_function
import paddle
import paddle.fluid as fluid
import numpy
import sys

def vgg_bn_drop(input):
    def conv_block(ipt, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=ipt,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1=conv_block(input,64,2,[0.3,0])
    conv2=conv_block(conv1,128,2,[0.4,0])
    conv3=conv_block(conv2,256,3,[0.4,0.4,0])
    conv4=conv_block(conv3,512,3,[0.4,0.4,0])
    conv5=conv_block(conv4,512,3,[0.4,0.4,0])
    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1= fluid.layers.fc(input=drop,size=512,act=None)
    bn=fluid.layers.batch_norm(input=fc1,act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2= fluid.layers.fc(input=drop2,size=512,act=None)
    predict=fluid.layers.fc(input=fc2,size=10,act='softmax')
    return predict
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu', bias_attr=False):
    tmp=fluid.layers.conv2d(input=input, filter_size=filter_size, num_filters=ch_out, stride=stride, padding=padding, act=None, bias_attr=bias_attr )
    return fluid.layers.batch_norm(input=tmp,act=act)

def shortcut(input,ch_in,ch_out,stride):
    if ch_in != ch_out:
        return conv_bn_layer(input,ch_out,1,stride,0, None)
    else:
        return input

def basicblock(input, ch_in, ch_out, stride):
    tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
    tmp1= conv_bn_layer(tmp, ch_out, 3,stride,1)
    short=shortcut(input, ch_in,ch_out,stride)
    return fluid.layers.elementwise_add(x=tmp1,y=short,act='relu')

def layer_warp(block_func,input,ch_in,ch_out,count,stride):
    tmp=block_func(input, ch_in,ch_out,stride)
    for i in range(1,count):
        tmp=block_func(tmp,ch_out,ch_out,1)
    return tmp
def resnet_cifar10(ipt,depth=32):
    assert(depth-2)%6==0
    n=(depth-2)//6
    nStages={16,64,128}
    conv1=conv_bn_layer(ipt,ch_out=16,filter_size=3,stride=1,padding=1)
    res1=layer_warp(basicblock,conv1,16,16,n,1)
    res2=layer_warp(basicblock,res1,16,32,n,2)
    res3=layer_warp(basicblock,res2,32,64,n,2)
    pool=fluid.layers.pool2d(input=res3, pool_size=4, pool_type='max', pool_stride=1, global_pooling=False)
    predict=fluid.layers.fc(input=pool,size=10,act='softmax')
    return predict
def inference_program():
    data_shape=[3,32,32]
    images=fluid.layers.data(name='pixel',shape=data_shape,dtype='float32')
    predict=resnet_cifar10(images,32)
    #predict=vgg_bn_drop(images)
    return predict

Train Program Config

CODE COPY FROM README

def train_program():
    predict=inference_program()
    label=fluid.layers.data(name='label',shape=[1],dtype='int64')
    cost=fluid.layers.cross_entropy(input=predict,label=label)
    avg_cost=fluid.layers.mean(cost)
    accuracy=fluid.layers.accuracy(input=predict,label=label )
    return [avg_cost,accuracy]

def optimizer_program():
    return fluid.optimizer.Adam(learning_rate=0.001)

BATCH_SIZE=128
print(BATCH_SIZE)
train_reader=paddle.batch( paddle.reader.shuffle(paddle.dataset.cifar.train10(),buf_size=50000),batch_size=BATCH_SIZE )
test_reader=paddle.batch(paddle.dataset.cifar.test10(),batch_size=BATCH_SIZE)

use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
feeder_order=['pixel','label']
main_program=fluid.default_main_program()
star_program=fluid.default_startup_program()
avg_cost,acc=train_program()

test_program=main_program.clone(for_test=True)
optimizer = optimizer_program()
optimizer.minimize(avg_cost)
exe=fluid.Executor(place)
EPOCH_NUM =2
# for traning test cost
def train_test(program,reader):
    count = 0
    feed_var_list = [
        program.global_block().var(var_name) for var_name in feed_order
    ]
    feeder_test = fluid.DataFeeder(
        feed_list=feed_var_list, place=place)
    test_exe = fluid.Executor(place)
    accumulated = len([avg_cost, acc]) * [0]
    for tid, test_data in enumerate(reader()):
        avg_cost_np = test_exe.run(program=program,
                                   feed=feeder_test.feed(test_data),
                                   fetch_list=[avg_cost, acc])
        accumulated = [x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)]
        count += 1
    return [x / count for x in accumulated]

params_dirname = "image_classification_resnet.inference.model"
def train_loop():
    feed_var_list_loop = [main_program.global_block().var(var_name) for var_name in feeder_order]
    feeder = fluid.DataFeeder( feed_list=feed_var_list_loop, place=place )
    exe.run(star_program)

    step=0
    for pass_id in range( EPOCH_NUM ):
        for step_id,data_train in enumerate( train_reader() ):
            avg_loss_value = exe.run(main_program, feed=feeder.feed(data_train), fetch_list=[avg_cost, acc])
            if step%1 == 0:
                print("step:")
                print(step)
                print(avg_cost)
            step += 1
        
        avg_cost_test, accuracy_test = train_test(test_program, reader=test_reader)

        if params_dirname is not None:
            fluid.io.save_inference_model(params_dirname,["pixel"],[predict], exe)


train_loop()            

报错: File "paddle_iamgeclassify.py", line 95, in avg_cost,acc=train_program() File "paddle_iamgeclassify.py", line 75, in train_program predict=inference_program() File "paddle_iamgeclassify.py", line 69, in inference_program predict=resnet_cifar10(images,32) File "paddle_iamgeclassify.py", line 62, in resnet_cifar10 pool=fluid.layers.pool2d(input=res3, pool_size=4, pool_type='max', pool_stride=1, global_pooling=False) File "/usr/local/lib/python2.7/dist-packages/paddle/fluid/layers/nn.py", line 2383, in pool2d "exclusive": exclusive, File "/usr/local/lib/python2.7/dist-packages/paddle/fluid/layer_helper.py", line 50, in append_op return self.main_program.current_block().append_op(*args, **kwargs) File "/usr/local/lib/python2.7/dist-packages/paddle/fluid/framework.py", line 1208, in append_op op = Operator(block=self, desc=op_desc, *args, kwargs) File "/usr/local/lib/python2.7/dist-packages/paddle/fluid/framework.py", line 657, in init self.desc.infer_shape(self.block.desc) paddle.fluid.core.EnforceNotMet: Due to the settings of padding(0), filter_size(4) and stride(1), the output size is less than 0, please check again. Input_size:2 at [/paddle/paddle/fluid/operators/pool_op.cc:39] PaddlePaddle Call Stacks: 0 0x7f8971787a96p paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const, int) + 486 1 0x7f8971dcef1cp paddle::operators::PoolOutputSize(int, int, int, int, bool) + 252 2 0x7f8971dd1e81p paddle::operators::PoolOp::InferShape(paddle::framework::InferShapeContext) const + 1537 3 0x7f897183c376p paddle::framework::OpDesc::InferShape(paddle::framework::BlockDesc const&) const + 902 4 0x7f89717f054cp 5 0x7f89717c18d0p 6 0x4c5326p PyEval_EvalFrameEx + 37958 7 0x4b9b66p PyEval_EvalCodeEx + 774 8 0x4d57a3p 9 0x4eef5ep 10 0x4eeb66p 11 0x4aaafbp 12 0x4a587ep PyObject_Call + 62 13 0x4be51ep PyEval_EvalFrameEx + 9790 14 0x4b9b66p PyEval_EvalCodeEx + 774 15 0x4d57a3p 16 0x4a587ep PyObject_Call + 62 17 0x4be51ep PyEval_EvalFrameEx + 9790 18 0x4b9b66p PyEval_EvalCodeEx + 774 19 0x4c1f56p PyEval_EvalFrameEx + 24694 20 0x4b9b66p PyEval_EvalCodeEx + 774 21 0x4c17c6p PyEval_EvalFrameEx + 22758 22 0x4b9b66p PyEval_EvalCodeEx + 774 23 0x4c17c6p PyEval_EvalFrameEx + 22758 24 0x4b9b66p PyEval_EvalCodeEx + 774 25 0x4c1f56p PyEval_EvalFrameEx + 24694 26 0x4b9b66p PyEval_EvalCodeEx + 774 27 0x4c1f56p PyEval_EvalFrameEx + 24694 28 0x4b9b66p PyEval_EvalCodeEx + 774 29 0x4eb69fp 30 0x4e58f2p PyRun_FileExFlags + 130 31 0x4e41a6p PyRun_SimpleFileExFlags + 390 32 0x4938cep Py_Main + 1358 33 0x7f8a4d522830p __libc_start_main + 240 34 0x493299p _start + 41

在我学习语义角色标注的示例时出现con1105 模块不存在的情况

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/book#689
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7