Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • book
  • Issue
  • #258

B
book
  • 项目概览

PaddlePaddle / book

通知 17
Star 4
Fork 0
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 40
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 37
  • Wiki 5
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
B
book
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 40
    • Issue 40
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 37
    • 合并请求 37
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 5
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 3月 27, 2017 by saxon_zh@saxon_zhGuest

windows-docker 下,单机直接运行 03.image_classification/trian.py没能启动训练直接Killed

Created by: llxxxll

python train.py I0326 23:52:29.501113 804 Util.cpp:160] commandline: --use_gpu=False --trainer_count=1 [INFO 2017-03-26 23:52:29,509 layers.py:2106] output for conv_0: c = 64, h = 32, w = 32, size = 65536 [INFO 2017-03-26 23:52:29,511 layers.py:2106] output for conv_1: c = 64, h = 32, w = 32, size = 65536 [INFO 2017-03-26 23:52:29,513 layers.py:2230] output for pool_0: c = 64, h = 16, w = 16, size = 16384 [INFO 2017-03-26 23:52:29,514 layers.py:2106] output for conv_2: c = 128, h = 16, w = 16, size = 32768 [INFO 2017-03-26 23:52:29,517 layers.py:2106] output for conv_3: c = 128, h = 16, w = 16, size = 32768 [INFO 2017-03-26 23:52:29,518 layers.py:2230] output for pool_1: c = 128, h = 8, w = 8, size = 8192 [INFO 2017-03-26 23:52:29,518 layers.py:2106] output for conv_4: c = 256, h = 8, w = 8, size = 16384 [INFO 2017-03-26 23:52:29,519 layers.py:2106] output for conv_5: c = 256, h = 8, w = 8, size = 16384 [INFO 2017-03-26 23:52:29,520 layers.py:2106] output for conv_6: c = 256, h = 8, w = 8, size = 16384 [INFO 2017-03-26 23:52:29,521 layers.py:2230] output for pool_2: c = 256, h = 4, w = 4, size = 4096 [INFO 2017-03-26 23:52:29,522 layers.py:2106] output for conv_7: c = 512, h = 4, w = 4, size = 8192 [INFO 2017-03-26 23:52:29,523 layers.py:2106] output for conv_8: c = 512, h = 4, w = 4, size = 8192 [INFO 2017-03-26 23:52:29,524 layers.py:2106] output for conv_9: c = 512, h = 4, w = 4, size = 8192 [INFO 2017-03-26 23:52:29,525 layers.py:2230] output for pool_3: c = 512, h = 2, w = 2, size = 2048 [INFO 2017-03-26 23:52:29,526 layers.py:2106] output for conv_10: c = 512, h = 2, w = 2, size = 2048 [INFO 2017-03-26 23:52:29,527 layers.py:2106] output for conv_11: c = 512, h = 2, w = 2, size = 2048 [INFO 2017-03-26 23:52:29,528 layers.py:2106] output for conv_12: c = 512, h = 2, w = 2, size = 2048 [INFO 2017-03-26 23:52:29,531 layers.py:2230] output for pool_4: c = 512, h = 1, w = 1, size = 512 [INFO 2017-03-26 23:52:29,534 networks.py:1472] The input order is [image, label] [INFO 2017-03-26 23:52:29,535 networks.py:1478] The output order is [classification_cost_0] [INFO 2017-03-26 23:52:29,536 layers.py:2106] output for conv_0: c = 64, h = 32, w = 32, size = 65536 [INFO 2017-03-26 23:52:29,537 layers.py:2106] output for conv_1: c = 64, h = 32, w = 32, size = 65536 [INFO 2017-03-26 23:52:29,539 layers.py:2230] output for pool_0: c = 64, h = 16, w = 16, size = 16384 [INFO 2017-03-26 23:52:29,539 layers.py:2106] output for conv_2: c = 128, h = 16, w = 16, size = 32768 [INFO 2017-03-26 23:52:29,540 layers.py:2106] output for conv_3: c = 128, h = 16, w = 16, size = 32768 [INFO 2017-03-26 23:52:29,541 layers.py:2230] output for pool_1: c = 128, h = 8, w = 8, size = 8192 [INFO 2017-03-26 23:52:29,542 layers.py:2106] output for conv_4: c = 256, h = 8, w = 8, size = 16384 [INFO 2017-03-26 23:52:29,543 layers.py:2106] output for conv_5: c = 256, h = 8, w = 8, size = 16384 [INFO 2017-03-26 23:52:29,544 layers.py:2106] output for conv_6: c = 256, h = 8, w = 8, size = 16384 [INFO 2017-03-26 23:52:29,546 layers.py:2230] output for pool_2: c = 256, h = 4, w = 4, size = 4096 [INFO 2017-03-26 23:52:29,547 layers.py:2106] output for conv_7: c = 512, h = 4, w = 4, size = 8192 [INFO 2017-03-26 23:52:29,548 layers.py:2106] output for conv_8: c = 512, h = 4, w = 4, size = 8192 [INFO 2017-03-26 23:52:29,549 layers.py:2106] output for conv_9: c = 512, h = 4, w = 4, size = 8192 [INFO 2017-03-26 23:52:29,552 layers.py:2230] output for pool_3: c = 512, h = 2, w = 2, size = 2048 [INFO 2017-03-26 23:52:29,553 layers.py:2106] output for conv_10: c = 512, h = 2, w = 2, size = 2048 [INFO 2017-03-26 23:52:29,555 layers.py:2106] output for conv_11: c = 512, h = 2, w = 2, size = 2048 [INFO 2017-03-26 23:52:29,556 layers.py:2106] output for conv_12: c = 512, h = 2, w = 2, size = 2048 [INFO 2017-03-26 23:52:29,557 layers.py:2230] output for pool_4: c = 512, h = 1, w = 1, size = 512 [INFO 2017-03-26 23:52:29,559 networks.py:1472] The input order is [image, label] [INFO 2017-03-26 23:52:29,559 networks.py:1478] The output order is [classification_cost_0] I0326 23:52:29.609350 804 GradientMachine.cpp:86] Initing parameters.. I0326 23:52:30.362373 804 GradientMachine.cpp:93] Init parameters done. Killed

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/book#258
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7