Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example.
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Problem Setup
Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity.
"我们使用从[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,每个点的横坐标表示同一类房屋真实价格的中位数,纵坐标表示线性回归模型根据特征预测的结果,当二者值完全相等的时候就会落在虚线上。所以模型预测得越准确,则点离虚线越近。\n",
我们使用从[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,每个点的横坐标表示同一类房屋真实价格的中位数,纵坐标表示线性回归模型根据特征预测的结果,当二者值完全相等的时候就会落在虚线上。所以模型预测得越准确,则点离虚线越近。
<palign="center">
<imgsrc = "image/predictions.png"width=400><br/>
图1. 预测值 V.S. 真实值
<imgsrc = "image/predictions.png"width=400><br/>
图1. 预测值 V.S. 真实值
</p>
## 模型概览
...
...
@@ -96,8 +96,8 @@ import paddle.v2.dataset.uci_housing as uci_housing
- 很多的机器学习技巧/模型(例如L1,L2正则项,向量空间模型-Vector Space Model)都基于这样的假设:所有的属性取值都差不多是以0为均值且取值范围相近的。
Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example.
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Problem Setup
Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity.
我们使用从[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,每个点的横坐标表示同一类房屋真实价格的中位数,纵坐标表示线性回归模型根据特征预测的结果,当二者值完全相等的时候就会落在虚线上。所以模型预测得越准确,则点离虚线越近。
<palign="center">
<imgsrc = "image/predictions.png"width=400><br/>
图1. 预测值 V.S. 真实值
<imgsrc = "image/predictions.png"width=400><br/>
图1. 预测值 V.S. 真实值
</p>
## 模型概览
...
...
@@ -138,8 +138,8 @@ import paddle.v2.dataset.uci_housing as uci_housing
- 很多的机器学习技巧/模型(例如L1,L2正则项,向量空间模型-Vector Space Model)都基于这样的假设:所有的属性取值都差不多是以0为均值且取值范围相近的。
The source code of this chapter is in [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification). For the first-time users, please refer to PaddlePaddle [Installation Tutorial](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html) for installation instructions.
The source code of this chapter is in [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification). For the first-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) for installation instructions.
The source code of this chapter is in [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification). For the first-time users, please refer to PaddlePaddle [Installation Tutorial](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html) for installation instructions.
The source code of this chapter is in [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/image_classification). For the first-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) for installation instructions.
Source code of this chapter is in [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/label_semantic_roles).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Background
Natural Language Analysis contains three components: Lexical Analysis, Syntactic Analysis, and Semantic Analysis. Semantic Role Labelling (SRL) is one way for Shallow Semantic Analysis. A predicate of a sentence is a property that a subject possesses or is characterized, such as what it does, what it is or how it is, which mostly corresponds to the core of an event. The noun associated with a predicate is called Argument. Semantic roles express the abstract roles that arguments of a predicate can take in the event, such as Agent, Patient, Theme, Experiencer, Beneficiary, Instrument, Location, Goal and Source, etc.
Source code of this chapter is in [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/label_semantic_roles).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Background
Natural Language Analysis contains three components: Lexical Analysis, Syntactic Analysis, and Semantic Analysis. Semantic Role Labelling (SRL) is one way for Shallow Semantic Analysis. A predicate of a sentence is a property that a subject possesses or is characterized, such as what it does, what it is or how it is, which mostly corresponds to the core of an event. The noun associated with a predicate is called Argument. Semantic roles express the abstract roles that arguments of a predicate can take in the event, such as Agent, Patient, Theme, Experiencer, Beneficiary, Instrument, Location, Goal and Source, etc.
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/machine_translation). Please refer to the PaddlePaddle [installation tutorial](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html) if you are a first time user.
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) if you are a first time user.
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/machine_translation). Please refer to the PaddlePaddle [installation tutorial](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html) if you are a first time user.
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst) if you are a first time user.
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Introduction
When we learn a new programming language, the first task is usually to write a program that prints "Hello World." In Machine Learning or Deep Learning, the equivalent task is to train a model to perform handwritten digit recognition with [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. Handwriting recognition is a typical image classification problem. The problem is relatively easy, and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a 28x28 matrix, and the label is one of the digits from 0 to 9. Each image is normalized in size and centered.
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
The source code for this tutorial is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits). First-time readers, please refer to PaddlePaddle [installation instructions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Introduction
When we learn a new programming language, the first task is usually to write a program that prints "Hello World." In Machine Learning or Deep Learning, the equivalent task is to train a model to perform handwritten digit recognition with [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. Handwriting recognition is a typical image classification problem. The problem is relatively easy, and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a 28x28 matrix, and the label is one of the digits from 0 to 9. Each image is normalized in size and centered.
The source code of this tutorial is in [book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/recommender_system).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Background
With the fast growth of e-commerce, online videos, and online reading business, users have to rely on recommender systems to avoid manually browsing tremendous volume of choices. Recommender systems understand users' interest by mining user behavior and other properties of users and products.
The source code of this tutorial is in [book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/recommender_system).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
## Background
With the fast growth of e-commerce, online videos, and online reading business, users have to rely on recommender systems to avoid manually browsing tremendous volume of choices. Recommender systems understand users' interest by mining user behavior and other properties of users and products.
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
This is intended as a reference tutorial. The source code of this tutorial lives on [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/word2vec).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
This is intended as a reference tutorial. The source code of this tutorial lives on [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/word2vec).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).