Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
e9abf856
B
book
项目概览
PaddlePaddle
/
book
通知
17
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e9abf856
编写于
5月 22, 2019
作者:
R
root
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add 02.recognize_digits ce files
上级
d8aa0ab3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
77 addition
and
17 deletion
+77
-17
02.recognize_digits/.run_ce.sh
02.recognize_digits/.run_ce.sh
+4
-0
02.recognize_digits/_ce.py
02.recognize_digits/_ce.py
+37
-0
02.recognize_digits/train.py
02.recognize_digits/train.py
+36
-17
未找到文件。
02.recognize_digits/.run_ce.sh
0 → 100644
浏览文件 @
e9abf856
#!/bin/bash
#This file is only used for continuous evaluation.
python train.py
--enable_ce
| python _ce.py
02.recognize_digits/_ce.py
0 → 100644
浏览文件 @
e9abf856
### This file is only used for continuous evaluation test!
from
__future__
import
print_function
from
__future__
import
division
from
__future__
import
absolute_import
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
from
kpi
import
AccKpi
train_cost_kpi
=
CostKpi
(
'train_cost'
,
0.02
,
0
,
actived
=
True
,
desc
=
'train cost'
)
test_cost_kpi
=
CostKpi
(
'test_cost'
,
0.02
,
0
,
actived
=
True
,
desc
=
'test cost'
)
test_acc_kpi
=
AccKpi
(
'test_acc'
,
0.02
,
0
,
actived
=
True
,
desc
=
'test acc'
)
tracking_kpis
=
[
train_cost_kpi
,
test_cost_kpi
,
test_acc_kpi
]
def
parse_log
(
log
):
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
log_to_ce
(
log
)
02.recognize_digits/train.py
浏览文件 @
e9abf856
...
@@ -15,14 +15,19 @@
...
@@ -15,14 +15,19 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
os
import
os
import
argparse
from
PIL
import
Image
from
PIL
import
Image
import
numpy
import
numpy
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
BATCH_SIZE
=
64
def
parse_args
():
PASS_NUM
=
5
parser
=
argparse
.
ArgumentParser
(
"mnist"
)
parser
.
add_argument
(
'--enable_ce'
,
action
=
'store_true'
,
help
=
"If set, run the task with continuous evaluation logs."
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
bool
,
default
=
False
,
help
=
"Whether to use GPU or not."
)
parser
.
add_argument
(
'--num_epochs'
,
type
=
int
,
default
=
5
,
help
=
"number of epochs."
)
args
=
parser
.
parse_args
()
return
args
def
loss_net
(
hidden
,
label
):
def
loss_net
(
hidden
,
label
):
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
...
@@ -68,6 +73,20 @@ def train(nn_type,
...
@@ -68,6 +73,20 @@ def train(nn_type,
params_filename
=
None
):
params_filename
=
None
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
return
startup_program
=
fluid
.
default_startup_program
()
main_program
=
fluid
.
default_main_program
()
if
args
.
enable_ce
:
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
startup_program
.
random_seed
=
90
main_program
.
random_seed
=
90
else
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
...
@@ -81,8 +100,7 @@ def train(nn_type,
...
@@ -81,8 +100,7 @@ def train(nn_type,
prediction
,
avg_loss
,
acc
=
net_conf
(
img
,
label
)
prediction
,
avg_loss
,
acc
=
net_conf
(
img
,
label
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
test_program
=
main_program
.
clone
(
for_test
=
True
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
optimizer
.
minimize
(
avg_loss
)
optimizer
.
minimize
(
avg_loss
)
...
@@ -104,16 +122,9 @@ def train(nn_type,
...
@@ -104,16 +122,9 @@ def train(nn_type,
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
exe
.
run
(
startup_program
)
exe
.
run
(
fluid
.
default_startup_program
())
main_program
=
fluid
.
default_main_program
()
epochs
=
[
epoch_id
for
epoch_id
in
range
(
PASS_NUM
)]
epochs
=
[
epoch_id
for
epoch_id
in
range
(
PASS_NUM
)]
lists
=
[]
lists
=
[]
...
@@ -143,12 +154,17 @@ def train(nn_type,
...
@@ -143,12 +154,17 @@ def train(nn_type,
exe
,
exe
,
model_filename
=
model_filename
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
params_filename
=
params_filename
)
if
args
.
enable_ce
:
print
(
"kpis
\t
train_cost
\t
%f"
%
metrics
[
0
]
)
print
(
"kpis
\t
test_cost
\t
%s"
%
avg_loss_val
)
print
(
"kpis
\t
test_acc
\t
%s"
%
acc_val
)
# find the best pass
# find the best pass
best
=
sorted
(
lists
,
key
=
lambda
list
:
float
(
list
[
1
]))[
0
]
best
=
sorted
(
lists
,
key
=
lambda
list
:
float
(
list
[
1
]))[
0
]
print
(
'Best pass is %s, testing Avgcost is %s'
%
(
best
[
0
],
best
[
1
]))
print
(
'Best pass is %s, testing Avgcost is %s'
%
(
best
[
0
],
best
[
1
]))
print
(
'The classification accuracy is %.2f%%'
%
(
float
(
best
[
2
])
*
100
))
print
(
'The classification accuracy is %.2f%%'
%
(
float
(
best
[
2
])
*
100
))
def
infer
(
use_cuda
,
def
infer
(
use_cuda
,
save_dirname
=
None
,
save_dirname
=
None
,
...
@@ -210,7 +226,10 @@ def main(use_cuda, nn_type):
...
@@ -210,7 +226,10 @@ def main(use_cuda, nn_type):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
use_cuda
=
False
args
=
parse_args
()
BATCH_SIZE
=
64
PASS_NUM
=
args
.
num_epochs
use_cuda
=
args
.
use_gpu
# predict = 'softmax_regression' # uncomment for Softmax
# predict = 'softmax_regression' # uncomment for Softmax
# predict = 'multilayer_perceptron' # uncomment for MLP
# predict = 'multilayer_perceptron' # uncomment for MLP
predict
=
'convolutional_neural_network'
# uncomment for LeNet5
predict
=
'convolutional_neural_network'
# uncomment for LeNet5
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录