提交 e9abf856 编写于 作者: R root

add 02.recognize_digits ce files

上级 d8aa0ab3
#!/bin/bash
#This file is only used for continuous evaluation.
python train.py --enable_ce | python _ce.py
### This file is only used for continuous evaluation test!
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import os
import sys
sys.path.append(os.environ['ceroot'])
from kpi import CostKpi
from kpi import AccKpi
train_cost_kpi = CostKpi('train_cost', 0.02, 0, actived=True, desc='train cost')
test_cost_kpi = CostKpi('test_cost', 0.02, 0, actived=True, desc='test cost')
test_acc_kpi= AccKpi('test_acc', 0.02, 0, actived=True, desc='test acc')
tracking_kpis=[train_cost_kpi, test_cost_kpi, test_acc_kpi]
def parse_log(log):
for line in log.split('\n'):
fs = line.strip().split('\t')
print(fs)
if len(fs) == 3 and fs[0] =='kpis':
kpi_name = fs[1]
kpi_value = float(fs[2])
yield kpi_name,kpi_value
def log_to_ce(log):
kpi_tracker = {}
for kpi in tracking_kpis:
kpi_tracker[kpi.name]=kpi
for (kpi_name, kpi_value) in parse_log(log):
print(kpi_name,kpi_value)
kpi_tracker[kpi_name].add_record(kpi_value)
kpi_tracker[kpi_name].persist()
if __name__ == '__main__':
log = sys.stdin.read()
log_to_ce(log)
......@@ -15,14 +15,19 @@
from __future__ import print_function
import os
import argparse
from PIL import Image
import numpy
import paddle
import paddle.fluid as fluid
BATCH_SIZE = 64
PASS_NUM = 5
def parse_args():
parser = argparse.ArgumentParser("mnist")
parser.add_argument('--enable_ce', action='store_true', help="If set, run the task with continuous evaluation logs.")
parser.add_argument('--use_gpu', type=bool, default=False, help="Whether to use GPU or not.")
parser.add_argument('--num_epochs', type=int, default=5, help="number of epochs.")
args=parser.parse_args()
return args
def loss_net(hidden, label):
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
......@@ -68,6 +73,20 @@ def train(nn_type,
params_filename=None):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
startup_program = fluid.default_startup_program()
main_program = fluid.default_main_program()
if args.enable_ce:
train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=BATCH_SIZE)
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
startup_program.random_seed = 90
main_program.random_seed = 90
else :
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=500), batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
......@@ -81,8 +100,7 @@ def train(nn_type,
prediction, avg_loss, acc = net_conf(img, label)
test_program = fluid.default_main_program().clone(for_test=True)
test_program = main_program.clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(avg_loss)
......@@ -104,16 +122,9 @@ def train(nn_type,
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
exe.run(fluid.default_startup_program())
main_program = fluid.default_main_program()
exe.run(startup_program)
epochs = [epoch_id for epoch_id in range(PASS_NUM)]
lists = []
......@@ -143,12 +154,17 @@ def train(nn_type,
exe,
model_filename=model_filename,
params_filename=params_filename)
if args.enable_ce:
print("kpis\ttrain_cost\t%f" % metrics[0] )
print("kpis\ttest_cost\t%s" % avg_loss_val)
print("kpis\ttest_acc\t%s" % acc_val)
# find the best pass
best = sorted(lists, key=lambda list: float(list[1]))[0]
print('Best pass is %s, testing Avgcost is %s' % (best[0], best[1]))
print('The classification accuracy is %.2f%%' % (float(best[2]) * 100))
def infer(use_cuda,
save_dirname=None,
......@@ -210,7 +226,10 @@ def main(use_cuda, nn_type):
if __name__ == '__main__':
use_cuda = False
args = parse_args()
BATCH_SIZE = 64
PASS_NUM = args.num_epochs
use_cuda = args.use_gpu
# predict = 'softmax_regression' # uncomment for Softmax
# predict = 'multilayer_perceptron' # uncomment for MLP
predict = 'convolutional_neural_network' # uncomment for LeNet5
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册