提交 e89e682f 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #295 from PaddlePaddle/readme

Add python current path for inference
...@@ -321,14 +321,17 @@ After training is done, user can use the trained model to classify images. The f ...@@ -321,14 +321,17 @@ After training is done, user can use the trained model to classify images. The f
```python ```python
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import os
def load_image(file): def load_image(file):
im = Image.open(file).convert('L') im = Image.open(file).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS) im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).astype(np.float32).flatten() im = np.array(im).astype(np.float32).flatten()
im = im / 255.0 im = im / 255.0
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/infer_3.png'),)) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/infer_3.png'),))
probs = paddle.infer( probs = paddle.infer(
output_layer=predict, parameters=parameters, input=test_data) output_layer=predict, parameters=parameters, input=test_data)
......
...@@ -317,14 +317,17 @@ trainer.train( ...@@ -317,14 +317,17 @@ trainer.train(
```python ```python
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import os
def load_image(file): def load_image(file):
im = Image.open(file).convert('L') im = Image.open(file).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS) im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).astype(np.float32).flatten() im = np.array(im).astype(np.float32).flatten()
im = im / 255.0 im = im / 255.0
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/infer_3.png'),)) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/infer_3.png'),))
probs = paddle.infer( probs = paddle.infer(
output_layer=predict, parameters=parameters, input=test_data) output_layer=predict, parameters=parameters, input=test_data)
......
...@@ -363,14 +363,17 @@ After training is done, user can use the trained model to classify images. The f ...@@ -363,14 +363,17 @@ After training is done, user can use the trained model to classify images. The f
```python ```python
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import os
def load_image(file): def load_image(file):
im = Image.open(file).convert('L') im = Image.open(file).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS) im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).astype(np.float32).flatten() im = np.array(im).astype(np.float32).flatten()
im = im / 255.0 im = im / 255.0
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/infer_3.png'),)) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/infer_3.png'),))
probs = paddle.infer( probs = paddle.infer(
output_layer=predict, parameters=parameters, input=test_data) output_layer=predict, parameters=parameters, input=test_data)
......
...@@ -359,14 +359,17 @@ trainer.train( ...@@ -359,14 +359,17 @@ trainer.train(
```python ```python
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import os
def load_image(file): def load_image(file):
im = Image.open(file).convert('L') im = Image.open(file).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS) im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).astype(np.float32).flatten() im = np.array(im).astype(np.float32).flatten()
im = im / 255.0 im = im / 255.0
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/infer_3.png'),)) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/infer_3.png'),))
probs = paddle.infer( probs = paddle.infer(
output_layer=predict, parameters=parameters, input=test_data) output_layer=predict, parameters=parameters, input=test_data)
......
import gzip import gzip
import os
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import paddle.v2 as paddle import paddle.v2 as paddle
...@@ -114,7 +115,8 @@ def main(): ...@@ -114,7 +115,8 @@ def main():
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/infer_3.png'), )) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/infer_3.png'), ))
probs = paddle.infer( probs = paddle.infer(
output_layer=predict, parameters=parameters, input=test_data) output_layer=predict, parameters=parameters, input=test_data)
......
...@@ -488,6 +488,7 @@ After training is done, users can use the trained model to classify images. The ...@@ -488,6 +488,7 @@ After training is done, users can use the trained model to classify images. The
```python ```python
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import os
def load_image(file): def load_image(file):
im = Image.open(file) im = Image.open(file)
im = im.resize((32, 32), Image.ANTIALIAS) im = im.resize((32, 32), Image.ANTIALIAS)
...@@ -495,7 +496,8 @@ def load_image(file): ...@@ -495,7 +496,8 @@ def load_image(file):
im = im / 255.0 im = im / 255.0
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/dog.png'),)) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/dog.png'),)
probs = paddle.infer( probs = paddle.infer(
output_layer=out, parameters=parameters, input=test_data) output_layer=out, parameters=parameters, input=test_data)
......
...@@ -480,6 +480,7 @@ Test with Pass 0, {'classification_error_evaluator': 0.885200023651123} ...@@ -480,6 +480,7 @@ Test with Pass 0, {'classification_error_evaluator': 0.885200023651123}
```python ```python
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import os
def load_image(file): def load_image(file):
im = Image.open(file) im = Image.open(file)
im = im.resize((32, 32), Image.ANTIALIAS) im = im.resize((32, 32), Image.ANTIALIAS)
...@@ -487,7 +488,8 @@ def load_image(file): ...@@ -487,7 +488,8 @@ def load_image(file):
im = im / 255.0 im = im / 255.0
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/dog.png'),)) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/dog.png'),)
probs = paddle.infer( probs = paddle.infer(
output_layer=out, parameters=parameters, input=test_data) output_layer=out, parameters=parameters, input=test_data)
......
...@@ -530,6 +530,7 @@ After training is done, users can use the trained model to classify images. The ...@@ -530,6 +530,7 @@ After training is done, users can use the trained model to classify images. The
```python ```python
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import os
def load_image(file): def load_image(file):
im = Image.open(file) im = Image.open(file)
im = im.resize((32, 32), Image.ANTIALIAS) im = im.resize((32, 32), Image.ANTIALIAS)
...@@ -537,7 +538,8 @@ def load_image(file): ...@@ -537,7 +538,8 @@ def load_image(file):
im = im / 255.0 im = im / 255.0
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/dog.png'),)) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/dog.png'),)
probs = paddle.infer( probs = paddle.infer(
output_layer=out, parameters=parameters, input=test_data) output_layer=out, parameters=parameters, input=test_data)
......
...@@ -522,6 +522,7 @@ Test with Pass 0, {'classification_error_evaluator': 0.885200023651123} ...@@ -522,6 +522,7 @@ Test with Pass 0, {'classification_error_evaluator': 0.885200023651123}
```python ```python
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import os
def load_image(file): def load_image(file):
im = Image.open(file) im = Image.open(file)
im = im.resize((32, 32), Image.ANTIALIAS) im = im.resize((32, 32), Image.ANTIALIAS)
...@@ -529,7 +530,8 @@ def load_image(file): ...@@ -529,7 +530,8 @@ def load_image(file):
im = im / 255.0 im = im / 255.0
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/dog.png'),)) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/dog.png'),)
probs = paddle.infer( probs = paddle.infer(
output_layer=out, parameters=parameters, input=test_data) output_layer=out, parameters=parameters, input=test_data)
......
...@@ -94,6 +94,7 @@ def main(): ...@@ -94,6 +94,7 @@ def main():
# inference # inference
from PIL import Image from PIL import Image
import numpy as np import numpy as np
import os
def load_image(file): def load_image(file):
im = Image.open(file) im = Image.open(file)
...@@ -103,7 +104,8 @@ def main(): ...@@ -103,7 +104,8 @@ def main():
return im return im
test_data = [] test_data = []
test_data.append((load_image('image/dog.png'), )) cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/dog.png'), ))
probs = paddle.infer( probs = paddle.infer(
output_layer=out, parameters=parameters, input=test_data) output_layer=out, parameters=parameters, input=test_data)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册