提交 e776e900 编写于 作者: X xiaoting 提交者: ceci3

Replace conv pool (#839)

* fix dead link for book

* replace simple_img_conv_pool to conv_pool
上级 3d2268e7
......@@ -239,6 +239,37 @@ def multilayer_perceptron():
return prediction
```
- 卷积池化层:在LeNet-5中会出现多个卷积-池化的操作,为避免代码重复书写,将串联的卷积-池化写成conv_pool函数。
```python
def conv_pool(input, num_filters, filter_size, pool_size, pool_stride, act="relu"):
"""
定义卷积池化层:
含有一个卷积层和一个池化层
Args:
input —— 网络输入
num_filters —— 卷积核的个数
filter_size —— 卷积核的大小
pool_size —— 池化核的大小
pool_stride —— 池化的步长
act —— 卷积层的激活函数
Return:
out -- 经过卷积池化后的特征图
"""
conv_out = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
act=act)
out = fluid.layers.pool2d(
input=conv_out,
pool_size=pool_size,
pool_stride=pool_stride)
return out
```
- 卷积神经网络LeNet-5: 输入的二维图像,首先经过两次卷积层到池化层,再经过全连接层,最后使用以softmax为激活函数的全连接层作为输出层。
```python
......@@ -254,7 +285,7 @@ def convolutional_neural_network():
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
# 第一个卷积-池化层
# 使用20个5*5的滤波器,池化大小为2,池化步长为2,激活函数为Relu
conv_pool_1 = fluid.nets.simple_img_conv_pool(
conv_pool_1 = conv_pool(
input=img,
filter_size=5,
num_filters=20,
......@@ -264,7 +295,7 @@ def convolutional_neural_network():
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
# 第二个卷积-池化层
# 使用50个5*5的滤波器,池化大小为2,池化步长为2,激活函数为Relu
conv_pool_2 = fluid.nets.simple_img_conv_pool(
conv_pool_2 = conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
......
......@@ -218,6 +218,36 @@ def multilayer_perceptron():
return prediction
```
-Conv_pool layer: LeNet-5 has multiple convolution-pooling operations. In order to avoid repeated code writing, the convolution-pooling in series is written as conv_pool function.
```python
def conv_pool(input, num_filters, filter_size, pool_size, pool_stride, act="relu"):
"""
Define convolution-pooling layer:
Conv_pool layer has a convolutional layer and a pooling layer
Args:
input —— Input
num_filters —— The number of filter
filter_size —— The filter size
pool_size —— The pool kernel size
pool_stride —— The pool stride size
act —— Activation type
Return:
out -- output
"""
conv_out = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
act=act)
out = fluid.layers.pool2d(
input=conv_out,
pool_size=pool_size,
pool_stride=pool_stride)
return out
```
-Convolutional neural network LeNet-5: The input two-dimensional image first passes through two convolutional layers to the pooling layer, then passes through the fully connected layer, and finally fully connection layer with softmax as activation function is used as output layer.
```python
......@@ -233,7 +263,7 @@ def convolutional_neural_network():
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
# the first convolution-pooling layer
# Use 20 5*5 filters, the pooling size is 2, the pooling step is 2, and the activation function is Relu.
conv_pool_1 = fluid.nets.simple_img_conv_pool(
conv_pool_1 = conv_pool(
input=img,
filter_size=5,
num_filters=20,
......@@ -243,7 +273,7 @@ def convolutional_neural_network():
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
# the second convolution-pooling layer
# Use 20 5*5 filters, the pooling size is 2, the pooling step is 2, and the activation function is Relu.
conv_pool_2 = fluid.nets.simple_img_conv_pool(
conv_pool_2 = conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
......
......@@ -281,6 +281,37 @@ def multilayer_perceptron():
return prediction
```
- 卷积池化层:在LeNet-5中会出现多个卷积-池化的操作,为避免代码重复书写,将串联的卷积-池化写成conv_pool函数。
```python
def conv_pool(input, num_filters, filter_size, pool_size, pool_stride, act="relu"):
"""
定义卷积池化层:
含有一个卷积层和一个池化层
Args:
input —— 网络输入
num_filters —— 卷积核的个数
filter_size —— 卷积核的大小
pool_size —— 池化核的大小
pool_stride —— 池化的步长
act —— 卷积层的激活函数
Return:
out -- 经过卷积池化后的特征图
"""
conv_out = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
act=act)
out = fluid.layers.pool2d(
input=conv_out,
pool_size=pool_size,
pool_stride=pool_stride)
return out
```
- 卷积神经网络LeNet-5: 输入的二维图像,首先经过两次卷积层到池化层,再经过全连接层,最后使用以softmax为激活函数的全连接层作为输出层。
```python
......@@ -296,7 +327,7 @@ def convolutional_neural_network():
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
# 第一个卷积-池化层
# 使用20个5*5的滤波器,池化大小为2,池化步长为2,激活函数为Relu
conv_pool_1 = fluid.nets.simple_img_conv_pool(
conv_pool_1 = conv_pool(
input=img,
filter_size=5,
num_filters=20,
......@@ -306,7 +337,7 @@ def convolutional_neural_network():
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
# 第二个卷积-池化层
# 使用50个5*5的滤波器,池化大小为2,池化步长为2,激活函数为Relu
conv_pool_2 = fluid.nets.simple_img_conv_pool(
conv_pool_2 = conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
......
......@@ -260,6 +260,36 @@ def multilayer_perceptron():
return prediction
```
-Conv_pool layer: LeNet-5 has multiple convolution-pooling operations. In order to avoid repeated code writing, the convolution-pooling in series is written as conv_pool function.
```python
def conv_pool(input, num_filters, filter_size, pool_size, pool_stride, act="relu"):
"""
Define convolution-pooling layer:
Conv_pool layer has a convolutional layer and a pooling layer
Args:
input —— Input
num_filters —— The number of filter
filter_size —— The filter size
pool_size —— The pool kernel size
pool_stride —— The pool stride size
act —— Activation type
Return:
out -- output
"""
conv_out = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
act=act)
out = fluid.layers.pool2d(
input=conv_out,
pool_size=pool_size,
pool_stride=pool_stride)
return out
```
-Convolutional neural network LeNet-5: The input two-dimensional image first passes through two convolutional layers to the pooling layer, then passes through the fully connected layer, and finally fully connection layer with softmax as activation function is used as output layer.
```python
......@@ -275,7 +305,7 @@ def convolutional_neural_network():
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
# the first convolution-pooling layer
# Use 20 5*5 filters, the pooling size is 2, the pooling step is 2, and the activation function is Relu.
conv_pool_1 = fluid.nets.simple_img_conv_pool(
conv_pool_1 = conv_pool(
input=img,
filter_size=5,
num_filters=20,
......@@ -285,7 +315,7 @@ def convolutional_neural_network():
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
# the second convolution-pooling layer
# Use 20 5*5 filters, the pooling size is 2, the pooling step is 2, and the activation function is Relu.
conv_pool_2 = fluid.nets.simple_img_conv_pool(
conv_pool_2 = conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册