提交 da00779c 编写于 作者: Q qiaolongfei

typo

上级 3ab94d5b
...@@ -209,15 +209,6 @@ N = 5 # 训练5-Gram ...@@ -209,15 +209,6 @@ N = 5 # 训练5-Gram
用于保存和加载word_dict和embedding table的函数 用于保存和加载word_dict和embedding table的函数
```python ```python
def wordemb(inlayer):
wordemb = paddle.layer.table_projection(
input=inlayer,
size=embsize,
param_attr=paddle.attr.Param(
name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0))
return wordemb
# save and load word dict and embedding table # save and load word dict and embedding table
def save_dict_and_embedding(word_dict, embeddings): def save_dict_and_embedding(word_dict, embeddings):
with open("word_dict", "w") as f: with open("word_dict", "w") as f:
...@@ -225,6 +216,17 @@ def save_dict_and_embedding(word_dict, embeddings): ...@@ -225,6 +216,17 @@ def save_dict_and_embedding(word_dict, embeddings):
f.write(key + " " + str(word_dict[key]) + "\n") f.write(key + " " + str(word_dict[key]) + "\n")
with open("embedding_table", "w") as f: with open("embedding_table", "w") as f:
numpy.savetxt(f, embeddings, delimiter=',', newline='\n') numpy.savetxt(f, embeddings, delimiter=',', newline='\n')
def load_dict_and_embedding():
word_dict = dict()
with open("word_dict", "r") as f:
for line in f:
key, value = line.strip().split(" ")
word_dict[key] = value
embeddings = numpy.loadtxt("embedding_table", delimiter=",")
return word_dict, embeddings
``` ```
接着,定义网络结构: 接着,定义网络结构:
......
...@@ -227,15 +227,6 @@ N = 5 # train 5-gram ...@@ -227,15 +227,6 @@ N = 5 # train 5-gram
- functions used to save and load word dict and embedding table - functions used to save and load word dict and embedding table
```python ```python
def wordemb(inlayer):
wordemb = paddle.layer.table_projection(
input=inlayer,
size=embsize,
param_attr=paddle.attr.Param(
name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0))
return wordemb
# save and load word dict and embedding table # save and load word dict and embedding table
def save_dict_and_embedding(word_dict, embeddings): def save_dict_and_embedding(word_dict, embeddings):
with open("word_dict", "w") as f: with open("word_dict", "w") as f:
...@@ -243,6 +234,17 @@ def save_dict_and_embedding(word_dict, embeddings): ...@@ -243,6 +234,17 @@ def save_dict_and_embedding(word_dict, embeddings):
f.write(key + " " + str(word_dict[key]) + "\n") f.write(key + " " + str(word_dict[key]) + "\n")
with open("embedding_table", "w") as f: with open("embedding_table", "w") as f:
numpy.savetxt(f, embeddings, delimiter=',', newline='\n') numpy.savetxt(f, embeddings, delimiter=',', newline='\n')
def load_dict_and_embedding():
word_dict = dict()
with open("word_dict", "r") as f:
for line in f:
key, value = line.strip().split(" ")
word_dict[key] = value
embeddings = numpy.loadtxt("embedding_table", delimiter=",")
return word_dict, embeddings
``` ```
- Map the $n-1$ words $w_{t-n+1},...w_{t-1}$ before $w_t$ to a D-dimensional vector though matrix of dimention $|V|\times D$ (D=32 in this example). - Map the $n-1$ words $w_{t-n+1},...w_{t-1}$ before $w_t$ to a D-dimensional vector though matrix of dimention $|V|\times D$ (D=32 in this example).
......
...@@ -251,15 +251,6 @@ N = 5 # 训练5-Gram ...@@ -251,15 +251,6 @@ N = 5 # 训练5-Gram
用于保存和加载word_dict和embedding table的函数 用于保存和加载word_dict和embedding table的函数
```python ```python
def wordemb(inlayer):
wordemb = paddle.layer.table_projection(
input=inlayer,
size=embsize,
param_attr=paddle.attr.Param(
name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0))
return wordemb
# save and load word dict and embedding table # save and load word dict and embedding table
def save_dict_and_embedding(word_dict, embeddings): def save_dict_and_embedding(word_dict, embeddings):
with open("word_dict", "w") as f: with open("word_dict", "w") as f:
...@@ -267,6 +258,17 @@ def save_dict_and_embedding(word_dict, embeddings): ...@@ -267,6 +258,17 @@ def save_dict_and_embedding(word_dict, embeddings):
f.write(key + " " + str(word_dict[key]) + "\n") f.write(key + " " + str(word_dict[key]) + "\n")
with open("embedding_table", "w") as f: with open("embedding_table", "w") as f:
numpy.savetxt(f, embeddings, delimiter=',', newline='\n') numpy.savetxt(f, embeddings, delimiter=',', newline='\n')
def load_dict_and_embedding():
word_dict = dict()
with open("word_dict", "r") as f:
for line in f:
key, value = line.strip().split(" ")
word_dict[key] = value
embeddings = numpy.loadtxt("embedding_table", delimiter=",")
return word_dict, embeddings
``` ```
接着,定义网络结构: 接着,定义网络结构:
......
...@@ -269,15 +269,6 @@ N = 5 # train 5-gram ...@@ -269,15 +269,6 @@ N = 5 # train 5-gram
- functions used to save and load word dict and embedding table - functions used to save and load word dict and embedding table
```python ```python
def wordemb(inlayer):
wordemb = paddle.layer.table_projection(
input=inlayer,
size=embsize,
param_attr=paddle.attr.Param(
name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0))
return wordemb
# save and load word dict and embedding table # save and load word dict and embedding table
def save_dict_and_embedding(word_dict, embeddings): def save_dict_and_embedding(word_dict, embeddings):
with open("word_dict", "w") as f: with open("word_dict", "w") as f:
...@@ -285,6 +276,17 @@ def save_dict_and_embedding(word_dict, embeddings): ...@@ -285,6 +276,17 @@ def save_dict_and_embedding(word_dict, embeddings):
f.write(key + " " + str(word_dict[key]) + "\n") f.write(key + " " + str(word_dict[key]) + "\n")
with open("embedding_table", "w") as f: with open("embedding_table", "w") as f:
numpy.savetxt(f, embeddings, delimiter=',', newline='\n') numpy.savetxt(f, embeddings, delimiter=',', newline='\n')
def load_dict_and_embedding():
word_dict = dict()
with open("word_dict", "r") as f:
for line in f:
key, value = line.strip().split(" ")
word_dict[key] = value
embeddings = numpy.loadtxt("embedding_table", delimiter=",")
return word_dict, embeddings
``` ```
- Map the $n-1$ words $w_{t-n+1},...w_{t-1}$ before $w_t$ to a D-dimensional vector though matrix of dimention $|V|\times D$ (D=32 in this example). - Map the $n-1$ words $w_{t-n+1},...w_{t-1}$ before $w_t$ to a D-dimensional vector though matrix of dimention $|V|\times D$ (D=32 in this example).
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册