Convolutional layer is the core of Convolutional Neural Network. The parameters in this layer are composed of a set of filters, or kernels. In forward step, each kernel moves horizontally and vertically, and compute dot product of the kernel and the input on corresponding positions, then add bias and apply activation function. The result is two dimensional activation map. For example, some kernel may recognize corners, and some may recognize circles. These convolution kernels may respond strongly to the corresponding features.
Convolutional layer is the core of Convolutional Neural Network. The parameters in this layer are composed of a set of filters, or kernels. In forward step, each kernel moves horizontally and vertically, and compute dot product of the kernel and the input on corresponding positions, then add bias and apply activation function. The result is two dimensional activation map. For example, some kernel may recognize corners, and some may recognize circles. These convolution kernels may respond strongly to the corresponding features.
...
@@ -81,6 +93,7 @@ Fig. 4 is a dynamic graph of convolutional layer, where depths are not shown for
...
@@ -81,6 +93,7 @@ Fig. 4 is a dynamic graph of convolutional layer, where depths are not shown for
Pooling layer performs downsampling. The main functionality is to reduce computation by reducing network parameters. It also prevents overfitting to some extent. Usually, a pooling layer is added after a convolutional layer. Pooling layer includes max pooling, average pooling, etc. Max pooling uses rectangles to segment input layer into several parts, and compute maximum value in each part as output (Fig. 5.)
Pooling layer performs downsampling. The main functionality is to reduce computation by reducing network parameters. It also prevents overfitting to some extent. Usually, a pooling layer is added after a convolutional layer. Pooling layer includes max pooling, average pooling, etc. Max pooling uses rectangles to segment input layer into several parts, and compute maximum value in each part as output (Fig. 5.)
...
@@ -90,6 +103,11 @@ Pooling layer performs downsampling. The main functionality is to reduce computa
...
@@ -90,6 +103,11 @@ Pooling layer performs downsampling. The main functionality is to reduce computa
[LeNet-5](http://yann.lecun.com/exdb/lenet/) is one of the simplest Convolutional Neural Networks. Fig. 6. shows its architecture: 2 dimensional image input is fed into two sets of convolutional layer and pooling layer, then it is fed into fully connected layer and softmax classifier. The following three properties of convolution enable LeNet-5 to better recognize images than Multilayer fully-connected perceptrons:
[LeNet-5](http://yann.lecun.com/exdb/lenet/) is one of the simplest Convolutional Neural Networks. Fig. 6. shows its architecture: 2 dimensional image input is fed into two sets of convolutional layer and pooling layer, then it is fed into fully connected layer and softmax classifier. The following three properties of convolution enable LeNet-5 to better recognize images than Multilayer fully-connected perceptrons:
Convolutional layer is the core of Convolutional Neural Network. The parameters in this layer are composed of a set of filters, or kernels. In forward step, each kernel moves horizontally and vertically, and compute dot product of the kernel and the input on corresponding positions, then add bias and apply activation function. The result is two dimensional activation map. For example, some kernel may recognize corners, and some may recognize circles. These convolution kernels may respond strongly to the corresponding features.
Convolutional layer is the core of Convolutional Neural Network. The parameters in this layer are composed of a set of filters, or kernels. In forward step, each kernel moves horizontally and vertically, and compute dot product of the kernel and the input on corresponding positions, then add bias and apply activation function. The result is two dimensional activation map. For example, some kernel may recognize corners, and some may recognize circles. These convolution kernels may respond strongly to the corresponding features.
...
@@ -118,6 +130,7 @@ Fig. 4 is a dynamic graph of convolutional layer, where depths are not shown for
...
@@ -118,6 +130,7 @@ Fig. 4 is a dynamic graph of convolutional layer, where depths are not shown for
Pooling layer performs downsampling. The main functionality is to reduce computation by reducing network parameters. It also prevents overfitting to some extent. Usually, a pooling layer is added after a convolutional layer. Pooling layer includes max pooling, average pooling, etc. Max pooling uses rectangles to segment input layer into several parts, and compute maximum value in each part as output (Fig. 5.)
Pooling layer performs downsampling. The main functionality is to reduce computation by reducing network parameters. It also prevents overfitting to some extent. Usually, a pooling layer is added after a convolutional layer. Pooling layer includes max pooling, average pooling, etc. Max pooling uses rectangles to segment input layer into several parts, and compute maximum value in each part as output (Fig. 5.)
...
@@ -127,6 +140,11 @@ Pooling layer performs downsampling. The main functionality is to reduce computa
...
@@ -127,6 +140,11 @@ Pooling layer performs downsampling. The main functionality is to reduce computa
[LeNet-5](http://yann.lecun.com/exdb/lenet/) is one of the simplest Convolutional Neural Networks. Fig. 6. shows its architecture: 2 dimensional image input is fed into two sets of convolutional layer and pooling layer, then it is fed into fully connected layer and softmax classifier. The following three properties of convolution enable LeNet-5 to better recognize images than Multilayer fully-connected perceptrons:
[LeNet-5](http://yann.lecun.com/exdb/lenet/) is one of the simplest Convolutional Neural Networks. Fig. 6. shows its architecture: 2 dimensional image input is fed into two sets of convolutional layer and pooling layer, then it is fed into fully connected layer and softmax classifier. The following three properties of convolution enable LeNet-5 to better recognize images than Multilayer fully-connected perceptrons: