提交 babc05d1 编写于 作者: W Wang,Jeff

Rephrase the sentences to improve the readiability

上级 432f0517
......@@ -139,7 +139,7 @@ PaddlePaddle在API中提供了自动加载[MNIST](http://yann.lecun.com/exdb/mni
1. `train_program`:指定如何从 `inference_program``标签值`中获取 `loss` 的函数。
这是指定损失计算的地方。
1. `optimizer_func`: 配置如何最小化损失。PaddlePaddle 支持最主要的优化方法
1. `optimizer_func`: “指定优化器配置的函数。优化器负责减少损失并驱动培训。Paddle 支持多种不同的优化器
1. `Trainer`:PaddlePaddle Trainer 管理由 `train_program``optimizer` 指定的训练过程。
通过 `event_handler` 回调函数,用户可以监控培训的进展。
......
......@@ -146,7 +146,7 @@ Here are the quick overview on the major fluid API complements.
This is where you specify the network flow.
1. `train_program`: A function that specify how to get avg_cost from `inference_program` and labels.
This is where you specify the loss calculations.
1. `optimizer_func`: Configure how to minimize the loss. Paddle supports most major optimization methods.
1. `optimizer_func`:"A function that specifies the configuration of the the optimizer. The optimizer is responsible for minimizing the loss and driving the training. Paddle supports many different optimizers."
1. `Trainer`: Fluid trainer manages the training process specified by the `train_program` and `optimizer`. Users can monitor the training
progress through the `event_handler` callback function.
1. `Inferencer`: Fluid inferencer loads the `inference_program` and the parameters trained by the Trainer.
......@@ -247,7 +247,7 @@ def train_program():
#### Optimizer Function Configuration
In the following `Adam` optimizer, `learning_rate` means the speed at which the network training converges.
In the following `Adam` optimizer, `learning_rate` specifies the learning rate in the optimization procedure.
```python
def optimizer_program():
......
......@@ -181,7 +181,7 @@ PaddlePaddle在API中提供了自动加载[MNIST](http://yann.lecun.com/exdb/mni
1. `train_program`:指定如何从 `inference_program` 和`标签值`中获取 `loss` 的函数。
这是指定损失计算的地方。
1. `optimizer_func`: 配置如何最小化损失。PaddlePaddle 支持最主要的优化方法
1. `optimizer_func`: “指定优化器配置的函数。优化器负责减少损失并驱动培训。Paddle 支持多种不同的优化器
1. `Trainer`:PaddlePaddle Trainer 管理由 `train_program` 和 `optimizer` 指定的训练过程。
通过 `event_handler` 回调函数,用户可以监控培训的进展。
......
......@@ -188,7 +188,7 @@ Here are the quick overview on the major fluid API complements.
This is where you specify the network flow.
1. `train_program`: A function that specify how to get avg_cost from `inference_program` and labels.
This is where you specify the loss calculations.
1. `optimizer_func`: Configure how to minimize the loss. Paddle supports most major optimization methods.
1. `optimizer_func`:"A function that specifies the configuration of the the optimizer. The optimizer is responsible for minimizing the loss and driving the training. Paddle supports many different optimizers."
1. `Trainer`: Fluid trainer manages the training process specified by the `train_program` and `optimizer`. Users can monitor the training
progress through the `event_handler` callback function.
1. `Inferencer`: Fluid inferencer loads the `inference_program` and the parameters trained by the Trainer.
......@@ -289,7 +289,7 @@ def train_program():
#### Optimizer Function Configuration
In the following `Adam` optimizer, `learning_rate` means the speed at which the network training converges.
In the following `Adam` optimizer, `learning_rate` specifies the learning rate in the optimization procedure.
```python
def optimizer_program():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册